Crossref journal-article
S. Karger AG
Microbial Physiology (127)
Abstract

Flagella are extremely effective organelles of locomotion used by a variety of bacteria and archaea. Some bacteria, including <i>Aeromonas</i>, <i>Azospirillum</i>, <i>Rhodospirillum</i>, and <i>Vibrio</i> species, possess dual flagellar systems that are suited for movement under different circumstances. Swimming in liquid is promoted by a single polar flagellum. Swarming over surfaces or in viscous environments is enabled by the production of numerous peritrichous, or lateral, flagella. The polar flagellum is produced continuously, while the lateral flagella are produced under conditions that disable polar flagellar function. Thus at times, two types of flagellar organelles are assembled simultaneously. This review focuses on the polar and lateral flagellar systems of <i>Vibrio parahaemolyticus</i>. Approximately 50 polar and 40 lateral flagellar genes have been identified encoding distinct structural, motor, export/assembly, and regulatory elements. The sodium motive force drives polar flagellar rotation, and the proton motive force powers lateral translocation. Polar genes are found exclusively on the large chromosome, and lateral genes reside entirely on the small chromosome of the organism. The timing of gene expression corresponds to the temporal demand for components during assembly of the organelle: RpoN and lateral- and polar-specific σ<sup>54</sup>-dependent transcription factors control early/intermediate gene transcription; lateral- and polar-specific σ<sup>28</sup> factors direct late flagellar gene expression. Although a different gene set encodes each flagellar system, the constituents of a central navigation system (i.e., chemotaxis signal transduction) are shared.

Bibliography

McCarter, L. L. (2004). Dual Flagellar Systems Enable Motility under Different Circumstances. Microbial Physiology, 7(1–2), 18–29. Portico.

Authors 1
  1. Linda L. McCarter (first)
References 64 Referenced 216
  1. 10.1046%2Fj.1365-2958.1996.344874.x
  2. 10.1016%2FS1369-5274%2802%2900302-8
  3. 10.1016%2FS0882-4010%2803%2900047-0
  4. 10.1016%2FS0968-0004%2800%2901672-8
  5. 10.1038%2F355182a0
  6. 10.1146%2Fannurev.biochem.72.121801.161737
  7. 10.1146%2Fannurev.mi.49.100195.002421
  8. 10.1128%2FJB.182.4.1035-1045.2000
  9. 10.1128%2FJB.184.21.5946-5954.2002
  10. 10.1093/hmg/3.2.347
  11. 10.1146%2Fannurev.genet.36.041602.134359
  12. 10.1046%2Fj.1365-2958.2003.03466.x
  13. 10.1093%2Fprotein%2F10.6.673
  14. 10.1128%2FJB.182.2.357-364.2000
  15. 10.1128%2FJB.183.22.6636-6644.2001
  16. 10.1146%2Fannurev.mi.34.100180.000441
  17. 10.1016%2FS0959-440X%2800%2900115-9
  18. 10.1016%2FS1369-5274%2899%2900033-8
  19. 10.3109/00016489709126129
  20. 10.1016%2FS0378-1097%2803%2900418-X
  21. 10.1046%2Fj.1365-2958.2002.02750.x
  22. 10.1128%2FJB.182.22.6499-6502.2000
  23. 10.1139%2Fm83-243
  24. 10.1056/NEJM197111182852108
  25. 10.1073%2Fpnas.91.18.8631
  26. 10.1007%2FBF00762688
  27. 10.1002/lary.20834
  28. 10.1139%2Fm88-078
  29. 10.1056/NEJMoa0902579
  30. 10.1128%2FJB.182.13.3693-3704.2000
  31. 10.1016%2FS0378-1097%2803%2900445-2
  32. 10.1128%2FJB.184.2.547-555.2002
  33. 10.1038%2F346677a0
  34. 10.1038%2F325637a0
  35. 10.1128%2FMMBR.65.3.445-462.2001
  36. 10.1016%2F0092-8674%2888%2990197-3
  37. 10.1158/0008-5472.CAN-09-3107
  38. 10.1128%2FJB.184.9.2429-2438.2002
  39. 10.1016%2FS0076-6879%2886%2925046-6
  40. 10.1146%2Fannurev.micro.57.030502.090832
  41. 10.1146%2Fannurev.bb.13.060184.000411
  42. 10.1016%2FS0378-1097%2801%2900166-5
  43. 10.1016%2FS0006-3495%2895%2980089-5
  44. 10.1038%2F371752b0
  45. 10.1016%2FS0140-6736%2803%2912659-1
  46. 10.1073%2Fpnas.74.7.3060
  47. 10.1016%2FS0378-1097%2897%2900162-6
  48. 10.1017%2FS0033583596003319
  49. 10.1046%2Fj.1365-2958.2000.01859.x
  50. 10.1046%2Fj.1365-2958.2001.02348.x
  51. 10.1128%2FIAI.69.7.4257-4267.2001
  52. 10.1097/MAO.0b013e31814b2787
  53. 10.1038%2F370104a0
  54. 10.1002%2Fcm.970030108
  55. 10.1128%2FJB.185.15.4508-4518.2003
  56. 10.1139%2Fm78-160
  57. 10.1016%2F0022-2836%2887%2990184-7
  58. 10.1016%2F0022-2836%2888%2990559-1
  59. 10.1016%2F0022-2836%2887%2990185-9
  60. 10.1006%2Fjmbi.1997.1537
  61. 10.1139%2Fm93-066
  62. 10.1016%2FS0923-2508%2802%2901308-6
  63. 10.1038%2Fnature01830
  64. 10.1128%2FJB.185.1.285-294.2003
Dates
Type When
Created 21 years, 3 months ago (May 28, 2004, 4:45 a.m.)
Deposited 4 months, 2 weeks ago (April 23, 2025, 11:08 p.m.)
Indexed 1 month ago (Aug. 6, 2025, 9:06 a.m.)
Issued 21 years, 8 months ago (Jan. 1, 2004)
Published 21 years, 8 months ago (Jan. 1, 2004)
Published Online 21 years, 3 months ago (June 3, 2004)
Published Print 21 years, 8 months ago (Jan. 1, 2004)
Funders 0

None

@article{McCarter_2004, title={Dual Flagellar Systems Enable Motility under Different Circumstances}, volume={7}, ISSN={2673-1673}, url={http://dx.doi.org/10.1159/000077866}, DOI={10.1159/000077866}, number={1–2}, journal={Microbial Physiology}, publisher={S. Karger AG}, author={McCarter, Linda L.}, year={2004}, pages={18–29} }