Crossref journal-article
Springer Science and Business Media LLC
Nature (297)
Bibliography

Yonekura, K., Maki-Yonekura, S., & Namba, K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424(6949), 643–650.

Authors 3
  1. Koji Yonekura (first)
  2. Saori Maki-Yonekura (additional)
  3. Keiichi Namba (additional)
References 47 Referenced 640
  1. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973) (10.1038/245380a0) / Nature by HC Berg (1973)
  2. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974) (10.1038/249073a0) / Nature by M Silverman (1974)
  3. Kudo, S., Magariyama, Y. & Aizawa, S.-I. Abrupt changes in flagellar rotation observed by laser darkfield microscopy. Nature 346, 677–680 (1990) (10.1038/346677a0) / Nature by S Kudo (1990)
  4. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000) (10.1038/35000233) / Nature by WS Ryu (2000)
  5. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974) (10.1038/249074a0) / Nature by SH Larsen (1974)
  6. Macnab, R. M. & Ornston, M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977) (10.1016/S0022-2836(77)80153-8) / J. Mol. Biol. by RM Macnab (1977)
  7. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000) (10.1128/JB.182.10.2793-2801.2000) / J. Bacteriol. by L Turner (2000)
  8. O'Brien, E. J. & Bennett, P. M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152 (1972) (10.1016/0022-2836(72)90168-4) / J. Mol. Biol. by EJ O'Brien (1972)
  9. Asakura, S. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. 1, 99–155 (1970) / Adv. Biophys. by S Asakura (1970)
  10. Calladine, C. R. Construction of bacterial flagella. Nature 225, 121–124 (1975) (10.1038/255121a0) / Nature by CR Calladine (1975)
  11. Calladine, C. R. Design requirements for the construction of bacterial flagella. J. Theor. Biol. 57, 469–489 (1976) (10.1016/0022-5193(76)90016-3) / J. Theor. Biol. by CR Calladine (1976)
  12. Calladine, C. R. Change of waveform in bacterial flagella: The role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479 (1978) (10.1016/0022-2836(78)90285-1) / J. Mol. Biol. by CR Calladine (1978)
  13. Yamashita, I. et al. Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132 (1998) (10.1038/nsb0298-125) / Nature Struct. Biol. by I Yamashita (1998)
  14. Mimori, Y. et al. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87 (1995) (10.1006/jmbi.1995.0281) / J. Mol. Biol. by Y Mimori (1995)
  15. Morgan, D. G., Owen, C., Melanson, L. A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices. J. Mol. Biol. 249, 88–110 (1995) (10.1006/jmbi.1995.0282) / J. Mol. Biol. by DG Morgan (1995)
  16. Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl Acad. Sci. USA 93, 15108–15113 (1996) (10.1073/pnas.93.26.15108) / Proc. Natl Acad. Sci. USA by Y Mimori-Kiyosue (1996)
  17. Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J. Mol. Biol. 270, 222–237 (1997) (10.1006/jmbi.1997.1111) / J. Mol. Biol. by Y Mimori-Kiyosue (1997)
  18. Mimori-Kiyosue, Y., Yamashita, I., Fujiyoshi, Y., Yamaguchi, S. & Namba, K. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J. Mol. Biol. 284, 521–530 (1998) (10.1006/jmbi.1998.2184) / J. Mol. Biol. by Y Mimori-Kiyosue (1998)
  19. Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001) (10.1038/35066504) / Nature by FA Samatey (2001)
  20. Hyman, H. C. & Trachtenberg, S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity. J. Mol. Biol. 220, 79–88 (1991) (10.1016/0022-2836(91)90382-G) / J. Mol. Biol. by HC Hyman (1991)
  21. Kanto, S., Okino, H., Aizawa, S.-I. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991) (10.1016/0022-2836(91)90187-B) / J. Mol. Biol. by S Kanto (1991)
  22. Beroukhim, R. & Unwin, N. Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy 70, 57–81 (1997) (10.1016/S0304-3991(97)00070-3) / Ultramicroscopy by R Beroukhim (1997)
  23. Yonekura, K. & Toyoshima, C. Structure determination of tubular crystals of membrane proteins. III. Solvent flattening. Ultramicroscopy 84, 29–45 (2000) (10.1016/S0304-3991(00)00008-5) / Ultramicroscopy by K Yonekura (2000)
  24. Wang, H. & Stubbs, G. Molecular dynamics in refinement against fiber diffraction data. Acta Crystallogr. A 49, 504–513 (1993) (10.1107/S0108767392011255) / Acta Crystallogr. A by H Wang (1993)
  25. Maki, S., Imada, K., Furukawa, Y., Vonderviszt, F. & Namba, K. Plugging interactions of HAP2 pentamer into the distal end of flagellar filament revealed by electron microscopy. J. Mol. Biol. 277, 771–777 (1998) (10.1006/jmbi.1998.1663) / J. Mol. Biol. by S Maki (1998)
  26. Vonderviszt, F., Kanto, S., Aizawa, S.-I. & Namba, K. Terminal region of flagellin are disordered in solution. J. Mol. Biol. 209, 127–133 (1989) (10.1016/0022-2836(89)90176-9) / J. Mol. Biol. by F Vonderviszt (1989)
  27. Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990) (10.1016/S0022-2836(05)80266-9) / J. Mol. Biol. by M Homma (1990)
  28. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998) (10.1126/science.280.5363.602) / Science by T Kubori (1998)
  29. Delahay, R. M. & Frankel, G. Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol. Microbiol. 45, 905–916 (2002) (10.1046/j.1365-2958.2002.03083.x) / Mol. Microbiol. by RM Delahay (2002)
  30. Fan, F., Ohnishi, K., Francis, N. R. & Macnab, R. M. The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol. Microbiol. 26, 1035–1046 (1997) (10.1046/j.1365-2958.1997.6412010.x) / Mol. Microbiol. by F Fan (1997)
  31. Minamino, T. & Macnab, R. M. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394 (1999) (10.1128/JB.181.5.1388-1394.1999) / J. Bacteriol. by T Minamino (1999)
  32. Yonekura, K. et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152 (2000) (10.1126/science.290.5499.2148) / Science by K Yonekura (2000)
  33. Henderson, R. et al. An atomic model for the structure of bacteriorhodopsin. J. Mol. Biol. 213, 899–929 (1990) (10.1016/S0022-2836(05)80271-2) / J. Mol. Biol. by R Henderson (1990)
  34. Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994) (10.1038/367614a0) / Nature by W Kühlbrandt (1994)
  35. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000) (10.1038/35036519) / Nature by K Murata (2000)
  36. Nogales, E., Sharon, G. W. & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998) (10.1038/34465) / Nature by E Nogales (1998)
  37. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995) (10.1017/S003358350000305X) / Q. Rev. Biophys. by R Henderson (1995)
  38. Fujiyoshi, Y. The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35, 25–80 (1998) (10.1016/S0065-227X(98)80003-8) / Adv. Biophys. by Y Fujiyoshi (1998)
  39. Toyoshima, C. Structure determination of tubular crystals of membrane proteins. I. Indexing of diffraction patterns. Ultramicroscopy 84, 1–14 (2000) (10.1016/S0304-3991(00)00010-3) / Ultramicroscopy by C Toyoshima (2000)
  40. DeRosier, D. J. Correction of high-resolution data for curvature of the Ewald sphere. Ultramicroscopy 81, 83–98 (2000) (10.1016/S0304-3991(99)00120-5) / Ultramicroscopy by DJ DeRosier (2000)
  41. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991) (10.1107/S0108767390010224) / Acta Crystallogr. A by TA Jones (1991)
  42. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallography R factor refinement by molecular dynamics. Science 235, 458–460 (1987) (10.1126/science.235.4787.458) / Science by AT Brünger (1987)
  43. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemistry of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993) (10.1107/S0021889892009944) / J. Appl. Crystallogr. by RA Laskowski (1993)
  44. Drenth, J. Principles of Protein X-ray Crystallography (Springer, New York, 1994) (10.1007/978-1-4757-2335-9) / Principles of Protein X-ray Crystallography by J Drenth (1994)
  45. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999) (10.1006/jsbi.1999.4094) / J. Struct. Biol. by DE McRee (1999)
  46. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997) (10.1016/S0076-6879(97)77028-9) / Methods Enzymol. by EA Merritt (1997)
  47. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991) (10.1107/S0021889891004399) / J. Appl. Crystallogr. by PJ Kraulis (1991)
Dates
Type When
Created 22 years ago (Aug. 6, 2003, 4:44 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 2:16 p.m.)
Indexed 2 weeks ago (Aug. 7, 2025, 4:57 p.m.)
Issued 22 years ago (Aug. 1, 2003)
Published 22 years ago (Aug. 1, 2003)
Published Print 22 years ago (Aug. 1, 2003)
Funders 0

None

@article{Yonekura_2003, title={Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy}, volume={424}, ISSN={1476-4687}, url={http://dx.doi.org/10.1038/nature01830}, DOI={10.1038/nature01830}, number={6949}, journal={Nature}, publisher={Springer Science and Business Media LLC}, author={Yonekura, Koji and Maki-Yonekura, Saori and Namba, Keiichi}, year={2003}, month=aug, pages={643–650} }