Abstract
Abstract. Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10–0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ≈0.1–0.4 (0.16±0.06 arithmetic mean and standard deviation). The overall median value of κ≈0.15 was by a factor of two lower than the values typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≈0.1 at D≈50 nm; κ≈0.2 at D≈200 nm), which is in agreement with earlier hygroscopicity tandem differential mobility analyzer (H-TDMA) studies. The CCN measurement results are consistent with aerosol mass spectrometry (AMS) data, showing that the organic mass fraction (forg) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≈200 nm). The κ values exhibited a negative linear correlation with forg (R2=0.81), and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≈0.1 which can be regarded as the effective hygroscopicity of biogenic secondary organic aerosol (SOA) and κinorg≈0.6 which is characteristic for ammonium sulfate and related salts. Both the size dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=κorg×forg +κinorg×finorg). The CCN number concentrations predicted with κp were in fair agreement with the measurement results (~20% average deviation). The median CCN number concentrations at S=0.1–0.82% ranged from NCCN,0.10≈35 cm−3 to NCCN,0.82≈160 cm−3, the median concentration of aerosol particles larger than 30 nm was NCN,30≈200 cm−3, and the corresponding integral CCN efficiencies were in the range of NCCN,0.10/NCN,30≈0.1 to NCCN,0.82/NCN,30≈0.8. Although the number concentrations and hygroscopicity parameters were much lower in pristine rainforest air, the integral CCN efficiencies observed were similar to those in highly polluted megacity air. Moreover, model calculations of NCCN,S assuming an approximate global average value of κ≈0.3 for continental aerosols led to systematic overpredictions, but the average deviations exceeded ~50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (≤100 cm−3). Model calculations assuming a constant aerosol size distribution led to higher average deviations at all investigated levels of supersaturation: ~60% for the campaign average distribution and ~1600% for a generic remote continental size distribution. These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols of Amazonia in detailed process models as well as in large-scale atmospheric and climate models.
Bibliography
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P., Andreae, M. O., Martin, S. T., & Pöschl, U. (2009). Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmospheric Chemistry and Physics, 9(19), 7551â7575.
References
82
Referenced
326
-
Anderson, T., Ackerman, A., Hartmann, D., Isaac, G., Kinne, S., Masunaga, H., Norris, J., Pöschl, U., Schmidt, S., Slingo, A. A., and Takayabu, Y.: Temporal and Spatial Variability of Clouds and Related Aerosols, in: Clouds in the Perturbed Climate System, edited by: Heintzenberg, J. and Charlson, R. J., MIT Press, Cambridge, ISBN~978-0-262-012874, 127–148, 2009.
(
10.7551/mitpress/8300.003.0008
) -
Andreae, M. O.: Aerosols before pollution, Science, 315(5808), 50–51, 2007.
(
10.1126/science.1136529
) -
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, 2009.
(
10.5194/acp-9-543-2009
) -
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part~1, The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
(
10.1016/j.earscirev.2008.03.001
) -
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303(5662), 1337–1342, 2004.
(
10.1126/science.1092779
) -
Artaxo, P., Fernandes, E. T., Martins, J. V., Yamasoe, M. A., Hobbs, P. V., Maenhaut, W., Longo, K. M., and Castanho, A.: Large-scale aerosol source apportionment in Amazonia, J. Geophys. Res.-Atmos., 103(D24), 31837–31847, 1998.
(
10.1029/98JD02346
) -
Artaxo, P., Maenhaut, W., Storms, H., and Van Grieken, R.: Aerosol Characteristics and Sources for the Amazon Basin During the Wet Season, J. Geophys. Res.-Atmos., 95(D10), 16971–16985, 1990.
(
10.1029/JD095iD10p16971
) -
Artaxo, P., Martins, J. V., Yamasoe, M. A., Procopio, A. S., Pauliquevis, T. M., Andreae, M. O., Guyon, P., Gatti, L. V., and Leal, A. M. C.: Physical and chemical properties of aerosols in the wet and dry seasons in Rondonia, Amazonia, J. Geophys. Res.-Atmos., 107(D20), 8081, https://doi.org/10.1029/2001JD000666, 2002.
(
10.1029/2001JD000666
) -
Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A.: Relating CCN activity, volatility, and droplet growth kinetics of $\\beta$-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795–812, 2009.
(
10.5194/acp-9-795-2009
) -
Broekhuizen, K., Chang, R.Y.-W., Leaitch, W. R., Li, S.-M., and Abbatt, J. P. D.: Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol compositions in downtown Toronto, Atmos. Chem. Phys., 6, 2513–2524, 2006.
(
10.5194/acp-6-2513-2006
) -
Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics, Atmos. Chem. Phys. Discuss., 9, 10303–10336, 2009.
(
10.5194/acpd-9-10303-2009
) -
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26(2), 185–222, 2007.
(
10.1002/mas.20115
) - Chen, Q., Farmer, D., Allan, J., Borrmann, S., Coe, H., Robinson, N., Schneider, J., Zom, S., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Characterization of organic aerosol with a high-resolution time-of-flight aerosol mass spectrometer during the Amazonian Aerosol Characterization Experiment (AMAZE-08), American Association for Aerosol Research, 2008.
-
Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T. G., Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R., Pauliquevis, T., Borrmann, S., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Mass spectral characterization of submicron biogenic organic particles in the Amazon basin, Geophys. Res. Lett., https://doi.org/10.1029/2009GL039880, in press, 2009.
(
10.1029/2009GL039880
) -
Cross, E. S., Slowik, J. G., Davidovits, P., Allan, J. D., Worsnop, D. R., Jayne, J. T., Lewis, D. K., Canagaratna, M., and Onasch, T. B.: Laboratory and ambient particle density determinations using light scattering in conjunction with aerosol mass spectrometry, Aerosol Sci. Tech., 41, 343–359, 2007.
(
10.1080/02786820701199736
) -
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78(24), 8281–8289, 2006.
(
10.1021/ac061249n
) -
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements, Part~1: Theory, Aerosol Sci. Tech., 38(12), 1185–1205, 2004.
(
10.1080/02786826.2004.10399461
) -
Duplissy, J., Gysel, M., Alfarra, M. R., Dommen, J., Metzger, A., Prevot, A. S. H., Weingartner, E., Laaksonen, A., Raatikainen, T., Good, N., Turner, S. F., McFiggans, G., and Baltensperger, U.: Cloud forming potential of secondary organic aerosol under near atmospheric conditions, Geophys. Res. Lett., 35(3), L03818, https://doi.org/10.1029/2007GL031075, 2008.
(
10.1029/2007GL031075
) -
Dusek, U., Frank, G. P., Curtius, J., Drewnick, F., Schneider, J., Kürten, A., Rose, D., Andreae, M. O., Borrmann, S., and Pöschl, U.: Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events, Geophys. Res. Lett., submitted, 2009a.
(
10.1029/2009GL040930
) - Dusek, U., Hessberg, C., Pöschl, U., et al.: CCN activity of laboratory generated SOA particles, in preparation, 2009b.
-
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more than chemistry for cloud nucleating ability of aerosol particles, Science, 312, 1375–1378, 2006.
(
10.1126/science.1125261
) -
Engelhart, G. J., Asa-Awuku, A., Nenes, A., and Pandis, S. N.: CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937–3949, 2008.
(
10.5194/acp-8-3937-2008
) -
Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L., DeCarlo, P., and Nenes, A.: Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity, J. Geophys. Res.-Atmos., 112(D10), D10S32, https://doi.org/10.1029/2006JD007426, 2007.
(
10.1029/2006JD007426
) -
Feingold, G. and Siebert, H.: Cloud-aerosol interactions from the micro to the cloud scale, in: Clouds in the Perturbed Climate System, edited by: Heintzenberg, J. and Charlson, R. J., MIT Press, Cambridge, ISBN~978-0-262-012874, 319–338, 2009.
(
10.7551/mitpress/9780262012874.003.0014
) -
Feingold, G.: Modeling of the first indirect effect: Analysis of measurement requirements, Geophys. Res. Lett., 30(19), 1997, https://doi.org/10.1029/2003GL017967, , 2003.
(
10.1029/2003GL017967
) -
Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J.: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach, J. Geophys. Res.-Atmos., 106(D19), 22907–22922, 2001
(
10.1029/2001JD000732
) -
Frank, G. P., Dusek, U., and Andreae, M. O.: Technical note: A method for measuring size-resolved CCN in the atmosphere, Atmos. Chem. Phys. Discuss., 6, 4879–4895, 2006.
(
10.5194/acpd-6-4879-2006
) -
Freud, E., Rosenfeld, D., Andreae, M. O., Costa, A. A., and Artaxo, P.: Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds, Atmos. Chem. Phys., 8, 1661–1675, 2008.
(
10.5194/acp-8-1661-2008
) - Hussein, T., Dal Maso, M., Petaja, T., Koponen, I. K., Paatero, P., Aalto, P. P., Hameri, K., and Kulmala, M.: Evaluation of an automatic algorithm for fitting the particle number size distributions, Boreal Environ. Res., 10, 337–355, 2005.
- IAPSAG, WMO/IUGG International Aerosol Precipitation Science Assessment Group (IAPSAG) Report: Aerosol Pollution Impact on Precipitation: A Scientific Review, Geneva, World Meteorological Organization, 482, 2007.
- IPCC, Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H. L.: Climate Change 2007: The Physical Science Basis, Contribution of Working Group~I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge and New York, Cambridge University Press, 996, 2007.
-
Jaenicke, R.: Aerosol cloud climate interaction, Tropospheric aerosols, edited by: Hobbs, P. V., Academic Press, San Diego, CA, pp 1–31, 1993.
(
10.1016/S0074-6142(08)60210-7
) -
King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959–2971, 2009.
(
10.5194/acp-9-2959-2009
) -
King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate, Geophys. Res. Lett., 34(24), L24806, https://doi.org/10.1029/2007GL030390, 2007.
(
10.1029/2007GL030390
) -
Kinne, S.: Climatologies of Cloud-related Aerosols: Part~1: Particle number and size, in: Clouds in the Perturbed Climate System, edited by: Heintzenberg, J. and Charlson, R. J., MIT Press, Cambridge, ISBN~978-0-262-012874, 37–57, 2009.
(
10.7551/mitpress/9780262012874.003.0031
) -
Kiss, G., Tombacz, E., Varga, B., Alsberg, T., and Persson, L.: Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol, Atmos. Environ., 37(27), 3783–3794, 2003.
(
10.1016/S1352-2310(03)00468-0
) -
Kostenidou, E., Pathak, R. K., and Pandis, S. N.: An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data, Aerosol Sci. Tech., 41(11), 1002–1010, 2007.
(
10.1080/02786820701666270
) -
Kreidenweis, S. M., Petters, M. D., and DeMott, P. J.: Single-parameter estimates of aerosol water content, Environ. Res. Lett., 3(3), 035002, https://doi.org/10.1088/1748-9326/3/3/035002, 2008.
(
10.1088/1748-9326/3/3/035002
) -
Kreidenweis, S. M., Petters, M. D., and Chuang, P. Y.: Cloud particle precursors, in: Clouds in the Perturbed Climate System, edited by: Heintzenberg, J. and Charlson, R. J., MIT Press, Cambridge, ISBN~978-0-262-012874, 291–318, 2009.
(
10.7551/mitpress/9780262012874.003.0013
) -
Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H., Yum, S. S., Tanimoto, H., and Matsueda, H.: Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005, Atmos. Chem. Phys., 8, 2933–2948, 2008.
(
10.5194/acp-8-2933-2008
) -
Lance, S., Medina, J., Smith, J. N., and Nenes, A.: Mapping the Operation of the DMT Continuous Flow CCN Counter, Aerosol Sci. Tech., 40(4), 242–254, 2006.
(
10.1080/02786820500543290
) -
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler, T.: Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the Aerodyne Aerosol Mass Spectrometer, Aerosol Sci. Tech., 41(8), 721–733, 2007.
(
10.1080/02786820701422278
) -
Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L., Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva-Dias, M. A., Spracklen, D. V., Swietlicki, E., and Trebs, I.: Sources and properties of Amazonian aerosols particles, Rev. Geophys., in press, 2009a.
(
10.1029/2008RG000280
) -
Martin, S. T., Artaxo, P., Andreae, M. O., et al.: Amazonian Aerosol Characterization Experiment~2008 (AMAZE-08), Atmos. Chem. Phys., in preparation, 2009b.
(
10.5194/acp-10-11415-2010
) -
Martins, J. A., Goncalves, F. L. T., Morales, C. A., Fisch, G. F., Pinheiro, F. G. M., Leal, J. B. V., Oliveira, C. J., Silva, E. M., Oliveira, J. C. P., Costa, A. A., and Dias, M.: Cloud condensation nuclei from biomass burning during the Amazonian dry-to-wet transition season, Meteorol. Atmos. Phys., 104(1–2), 83–93, 2009.
(
10.1007/s00703-009-0019-6
) -
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, 2006.
(
10.5194/acp-6-2593-2006
) -
Medina, J., Nenes, A., Sotiropoulou, R.-E. P., Cottrell, L. D., Ziemba, L. D., Beckman, P. J., and Griffin, R. J.: Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size-resolved composition, J. Geophys. Res., 112, D10S31, https://doi.org/10.1029/2006JD007588, 2007.
(
10.1029/2006JD007588
) -
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and crystalline aerosol particles interacting with water vapor - Part~1: Microstructure, phase transitions, hygroscopic growth and kinetic limitations, Atmos. Chem. Phys. Discuss., 9, 7333–7412, 2009.
(
10.5194/acpd-9-7333-2009
) -
Petters, M. D., Wex, H., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol - Part~2: Theoretical approaches, Atmos. Chem. Phys., 9, 3999–4009, 2009.
(
10.5194/acp-9-3999-2009
) -
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, 2007.
(
10.5194/acp-7-1961-2007
) -
Pöschl, U., Rose, D., and Andreae, M. O.: Climatologies of Cloud-related Aerosols – Part~2: Particle Hygroscopicity and Cloud Condensation Nuclei Activity, in: Clouds in the Perturbed Climate System, edited by: Heintzenberg, J. and Charlson, R. J., MIT Press, Cambridge, ISBN~978-0-262-012874, 58–72, 2009a.
(
10.7551/mitpress/9780262012874.003.0032
) - Pöschl, U., Andreae, M. O., Sinha, B. et al.: Amazonian aerosols: bioparticles and organics with a grain of salt, in preparation, 2009b.
-
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol, J. Geophys. Res.-Atmos., 112(D10), D10223, https://doi.org/10.1029/2006JD007963, 2007.
(
10.1029/2006JD007963
) - Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, Dordrecht, Kluwer Academic Publishers, 1997.
-
Reutter, P., Trentmann, J., Su, H., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067–7080, 2009.
(
10.5194/acp-9-7067-2009
) -
Rissler, J., Swietlicki, E., Zhou, J., Roberts, G., Andreae, M. O., Gatti, L. V., and Artaxo, P.: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition – comparison of modeled and measured CCN concentrations, Atmos. Chem. Phys., 4, 2119–2143, 2004.
(
10.5194/acp-4-2119-2004
) -
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M. O.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmos. Chem. Phys., 6, 471–491, 2006.
(
10.5194/acp-6-471-2006
) -
Roberts, G. C., Andreae, M. O., Zhou, J., and Artaxo, P.: Cloud condensation nuclei in the Amazon Basin: "marine" conditions over a continent?, Geophysical Research Letters, 28(14), 2807–2810, 2001.
(
10.1029/2000GL012585
) -
Roberts, G. C., Artaxo, P., Jingchuan, Z., Swietlicki, E., and Andreae, M. O.: Sensitivity of CCN spectra on chemical and physical properties of aerosol: a case study from the Amazon Basin, J. Geophys. Res., 107(D20), LBA37-1-18, 2002.
(
10.1029/2001JD000583
) -
Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements, Aerosol Sci. Tech., 39(3), 206–221, 2005.
(
10.1080/027868290913988
) -
Roberts, G. C., Nenes, A., Seinfeld, J. H., and Andreae, M. O.: Impact of biomass burning on cloud properties in the Amazon Basin, J. Geophys. Res.-Atmos., 108(D2), https://doi.org/10.1029/2001JD000985, 2003.
(
10.1029/2001JD000985
) -
Roberts, G. C., Ramana, M. V., Corrigan, C., Kim, D., and Ramanathan, V.: Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles, P. Natl. Acad. Sci. USA, 105(21), 7370–7375, 2008.
(
10.1073/pnas.0710308105
) -
Roberts, G.: Interactive comment on "Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size resolved measurements and modeling of atmospheric aerosol composition and CCN activity", Atmos. Chem. Phys. Discuss., 9, 1384–1387, 2009.
(
10.5194/acp-9-7551-2009
) - Roldin, P., Nilsson, E., Swietlicki, E., Massling, A., and Zhou, J.: Lund SMPS User's manual, EUCAARI Brazil version, 2008.
-
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179, 2008.
(
10.5194/acp-8-1153-2008
) -
Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part~1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys. Discuss., 8, 17343–17392, 2008.
(
10.5194/acpd-8-17343-2008
) -
Rose, D., Garland, R. M., Yang, H., Berghof, M., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Andreae, M. O. and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part~2: CCN composition and diurnal cycles, Atmos. Chem. Phys., in preparation, 2009.
(
10.5194/acpd-10-26841-2010
) -
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?, Science, 321(5894), 1309–1313, 2008.
(
10.1126/science.1160606
) -
Salma, I. and Láng, G. G.: How many carboxyl groups does an average molecule of humic-like substances contain?, Atmos. Chem. Phys. Discuss., 8, 10005–10020, 2008.
(
10.5194/acpd-8-10005-2008
) - Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics, from air pollution to climate change, John Wiley and Sons, 2006.
- Sinha, B., Huth, J., Hoppe, P., et al.: Composition and mixing state of wet season tropical rain forest aerosol: A single particle study combining optical microscopy, SEM-EDX, NanoSIMS and AFM, in preparation, 2009.
-
Shantz, N. C., Chang, R. Y.-W., Slowik, J. G., Abbatt, J. P. D., and Leaitch, W. R.: Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site, Atmos. Chem. Phys. Discuss., 9, 13775–13799, 2009.
(
10.5194/acpd-9-13775-2009
) -
Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Dunlea, E. J., Roberts, G. C., Tomlinson, J. M., Collins, D. R., Howell, S. G., Kapustin, V. N., McNaughton, C. S., and Zhou, J.: Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6727–6742, 2009.
(
10.5194/acp-9-6727-2009
) -
Sorooshian, A., Murphy, S. M., Hersey, S., Gates, H., Padro, L. T., Nenes, A., Brechtel, F. J., Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Comprehensive airborne characterization of aerosol from a major bovine source, Atmos. Chem. Phys., 8, 5489–5520, 2008.
(
10.5194/acp-8-5489-2008
) -
Talbot, R. W., Andreae, M. O., Berresheim, H., Artaxo, P., Garstang, M., Harriss, R. C., Beecher, K. M., and Li, S. M.: Aerosol Chemistry During the Wet Season in Central Amazonia – the Influence of Long-Range Transport, J. Geophys. Res.-Atmos., 95(D10), 16955–16969, 1990.
(
10.1029/JD095iD10p16955
) -
Tsigaridis, K., Krol, M., Dentener, F. J., Balkanski, Y., Lathière, J., Metzger, S., Hauglustaine, D. A., and Kanakidou, M.: Change in global aerosol composition since preindustrial times, Atmos. Chem. Phys., 6, 5143–5162, 2006.
(
10.5194/acp-6-5143-2006
) -
Vestin, A., Rissler, J., Swietlicki, E., Frank, G. P., and Andreae, M. O.: Cloud-nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling, J. Geophys.l Res.-Atmos., 112(D14), D14201, https://doi.org/10.1029/2006JD008104, 2007.
(
10.1029/2006JD008104
) -
Wang, J., Lee, Y.-N., Daum, P. H., Jayne, J., and Alexander, M. L.: Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect, Atmos. Chem. Phys., 8, 6325–6339, 2008.
(
10.5194/acp-8-6325-2008
) -
Wex, H., Petters, M. D., Carrico, C. M., Hallbauer, E., Massling, A., McMeeking, G. R., Poulain, L., Wu, Z., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and activation for secondary organic aerosol: Part~1 - Evidence from measurements, Atmos. Chem. Phys., 9, 3987–3997, 2009.
(
10.5194/acp-9-3987-2009
) -
Wex, H., Hennig, T., Salma, I., Ocskay, R., Kiselev, A., Henning, S., Massling, A., Wiedensohler, A., and Stratmann, F.: Hygroscopic growth and measured and modeled critical super-saturations of an atmospheric HULIS sample, Geophys. Res. Lett., 34(2), L02818, https://doi.org/10.1029/2006GL028260, 2007.
(
10.1029/2006GL028260
) -
Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S. S., Rose, D., Su, H., and Pöschl, U.: Rapid aerosol particle growth and increase of cloud condensation nucleus activity by secondary aerosol formation and condensation: A case study for regional air pollution in northeastern China, J. Geophys. Res.-Atmos., 114, D00G08, https://doi.org/10.1029/2008JD010884, 2009.
(
10.1029/2008JD010884
) -
Zhou, J. C., Swietlicki, E., Hansson, H. C., and Artaxo, P.: Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season, J. Geophys. Res.-Atmos., 107(D20), 8055, https://doi.org/10.1029/2000JD000203, 2002.
(
10.1029/2000JD000203
)
Dates
Type | When |
---|---|
Created | 15 years, 4 months ago (April 29, 2010, 10:16 a.m.) |
Deposited | 6 months, 2 weeks ago (Feb. 20, 2025, 6:06 a.m.) |
Indexed | 1 month ago (Aug. 5, 2025, 8:35 a.m.) |
Issued | 15 years, 10 months ago (Oct. 9, 2009) |
Published | 15 years, 10 months ago (Oct. 9, 2009) |
Published Online | 15 years, 10 months ago (Oct. 9, 2009) |
@article{Gunthe_2009, title={Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity}, volume={9}, ISSN={1680-7324}, url={http://dx.doi.org/10.5194/acp-9-7551-2009}, DOI={10.5194/acp-9-7551-2009}, number={19}, journal={Atmospheric Chemistry and Physics}, publisher={Copernicus GmbH}, author={Gunthe, S. S. and King, S. M. and Rose, D. and Chen, Q. and Roldin, P. and Farmer, D. K. and Jimenez, J. L. and Artaxo, P. and Andreae, M. O. and Martin, S. T. and Pöschl, U.}, year={2009}, month=oct, pages={7551–7575} }