Crossref journal-article
Copernicus GmbH
Atmospheric Chemistry and Physics (3145)
Abstract

Abstract. The understanding of present atmospheric transport processes from Southern Hemisphere (SH) landmasses to Antarctica can improve the interpretation of stratigraphic data in Antarctic ice cores. In addition, long range transport can deliver key nutrients normally not available to marine ecosystems in the Southern Ocean and may trigger or enhance primary productivity. However, there is a dearth of observational based studies of dust transport in the SH. This work aims to improve current understanding of dust transport in the SH by showing a characterization of two dust events originating in the Patagonia desert (south end of South America). The approach is based on a combined and complementary use of satellite retrievals (detectors MISR, MODIS, GLAS, POLDER, OMI), transport model simulation (HYSPLIT) and surface observations near the sources and aerosol measurements in Antarctica (Neumayer and Concordia sites). Satellite imagery and visibility observations confirm dust emission in a stretch of dry lakes along the coast of the Tierra del Fuego (TdF) island (~54° S) and from the shores of the Colihue Huapi lake in Central Patagonia (~46° S) in February 2005. Model simulations initialized by these observations reproduce the timing of an observed increase in dust concentration at the Concordia Station and some of the observed increases in atmospheric aerosol absorption (here used as a dust proxy) in the Neumayer station. The TdF sources were the largest contributors of dust at both sites. The transit times from TdF to the Neumayer and Concordia sites are 6–7 and 9–10 days respectively. Lidar observations and model outputs coincide in placing most of the dust cloud in the boundary layer and suggest significant deposition over the ocean immediately downwind. Boundary layer dust was detected as far as 1800 km from the source and ~800 km north of the South Georgia Island over the central sub-Antarctic Atlantic Ocean. Although the analysis suggests the presence of dust at ~1500 km SW of South Africa five days after, the limited capabilities of existing satellite platforms to differentiate between aerosol types do not permit a definitive conclusion. In addition, the model simulations show dust lifting to the free troposphere as it travels south but it could not be confirmed by the satellite observations due to cloudiness. This work demonstrates that complementary information from existing transport models, satellite and surface data can yield a consistent picture of the dust transport from the Patagonia desert to Antarctica. It also illustrates the limitation of using any of these approaches individually to characterize the transport of dust in a heavily cloudy area.

Bibliography

Gassó, S., Stein, A., Marino, F., Castellano, E., Udisti, R., & Ceratto, J. (2010). A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica. Atmospheric Chemistry and Physics, 10(17), 8287–8303.

Authors 6
  1. S. Gassó (first)
  2. A. Stein (additional)
  3. F. Marino (additional)
  4. E. Castellano (additional)
  5. R. Udisti (additional)
  6. J. Ceratto (additional)
References 76 Referenced 66
  1. Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157,1998 (10.1029/1998JD200032)
  2. Ackerman, S. A.: Remote sensing aerosols using satellite infrared observations, J. Geophys. Res., 102, 17069–17079,1997. (10.1029/96JD03066)
  3. Baddock, M. C., Bullard, J. C., and Bryant, R. G.: Dust source identification using MODIS: a comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ., 113, 1511–1523. https://doi.org/10.1016/j.rse.2009.03.002, 2009. (10.1016/j.rse.2009.03.002)
  4. Baker, A. R., Jickells, T. D., Witt, M., and Linge, K. L.: Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean, Mar. Chem., 98, 43–58, 2006. (10.1016/j.marchem.2005.06.004)
  5. Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E., and Barkov, N. I.: Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6, Earth Planet. Sci. Lett., 146, 573–589, 1997 (10.1016/S0012-821X(96)00255-5)
  6. Bergametti, G., Remoudaki, E., Losno, R., Steiner, E., Chatenet, B. et al.: Sources, transport and deposition of atmospheric phosphorus over the northwestern Mediterranean. J. Atmos. Chem., 14 , 501–513, 1992. (10.1007/BF00115254)
  7. Becagli S., Castellano, E., Cerri, O., Chiari, M., Lucarelli, F., Marino, F., Morganti, A., Nava, S., Rugi, F., Severi, M., Traversi, R., Vitale, V., and Udisti, R.: All year round background aerosol at Dome C (Antarctica): Chemical composition of size-segregated samples collected during the 2004-05 campaign, edited by: Colacino, M. and Ravanelli, C., Conference Proceedings, XI Workshop Italian Research on Antarctic Atmosphere, SIF Bologna, Italy, 17–42, 2009.
  8. Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., et al.: Climate driven trends in contemporary ocean productivity, Nature, 444, 752–755, 2006. (10.1038/nature05317)
  9. Bigler, M., Röthlisberger, R., Lambert, F., Stocker, T. F., and Wagenbach, D. : Aerosol deposited in East Antarctica over the last glacial cycle: Detailed apportionment of continental and sea salt contributions, J. Geophys. Res., 111, D08205, https://doi.org/10.1029/2005JD006469, 2006 (10.1029/2005JD006469)
  10. Diner, D. J., Abdou, W. A., Conel, J. E., Crean, K. A., Gaitley, B. J., Helmlinger, M., Kahn, R. A. Martonchik, J. V., and Pilorz, S. H.: MISR aerosol retrievals over southern Africa during the SAFARI-2000 dry season campaign, Geophys. Res. Lett., 28, 3127–3130, 2001. (10.1029/2001GL013188)
  11. Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT{_}4 modelling system for trajectories, dispersion, and deposition, Australian Meteorological Magazine, 47, 295–308,1998.
  12. Draxler, R. R., Gillette, D. A. Kirkpatrick, J. S. and Heller, J.: Estimating PM10 air concentrations from dust storms in Iraq, Kuwait, and Saudi Arabia, Atmos. Environ., 35, 4315–4330, 2001. (10.1016/S1352-2310(01)00159-5)
  13. Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resour. Lab., Silver Spring, Md., available online at: http://www.arl.noaa.gov/ready/hysplit4.html, 2003.
  14. Darmenov, A. and Sokolik, I. N.: Identifying the regional thermal-IR radiative signature of mineral dust with MODIS, Geophys. Res. Lett., 32, L16803, https://doi.org/10.1029/2005GL023092, 2005. (10.1029/2005GL023092)
  15. del Valle, H. F., Elissalde, N. O., Gagliardini, D. A., and Milovich, J.: Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery, Arid Soil Res. Rehab., 12(2), 1–27, 1998. (10.1080/15324989809381502)
  16. Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D., and Slutsker, I.: Variability of absorption and optical properties of key aerosol types observed in 5 worldwide locations, J. Atmos. Sci., 59, 590–608, 2002. (10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2)
  17. Escudero, M., Stein, A., Draxler, R. R., Querol, X., Alastuey, A., Castillo, S., and Avila, A.: Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model, J. Geophys. Res.-Atmos., 111(D6), D06210, https://doi.org/10.1029/2005JD006395, 2006. (10.1029/2005JD006395)
  18. Fattori I., Becagli, S., Bellandi, S., Innocenti, M., Mannini, A., Severi, M., Vitale, V., and Udisti, R.: Chemical composition and physical features of summer aerosol at Terra Nova Bay and Dome C (Antarctica), J. Environ .Monitor., 7(12), 1265–1274, 2005. (10.1039/b507327h)
  19. Fiebig, M., Lunder, C. R., and Stohl, A.: Tracing biomass burning aerosol from South America to Troll Research Station, Antarctica, Geophys. Res. Lett., 36, L14815, https://doi.org/10.1029/2009GL038531,2009 (10.1029/2009GL038531)
  20. Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Wegener, A., Udisti, R., Becagli, S., Castellano, E., Morganti, A., Severi, M., Wolff, E. W., Littot, G. C., Röthlisberger, R., Mulvaney, R., Hutterli, M. A., Kaufmann, P., Federer, U., Lambert, F., Bigler, M., Hansson, M., Jonsell, U., De Angelis, M., Boutron, C., Siggaard-Andersen, M.-L., Steffensen, J. P., Barbante, C., Gaspari, V., Gabrielli, P., and Wagenbach, D.: Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica, Earth Planet. Sci. Lett., 260, 340–354, 2007. (10.1016/j.epsl.2007.06.014)
  21. Gassó, S. and Stein, A. F. : Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean?, Geophys. Res. Lett., 34, L01801, https://doi.org/10.1029/2006GL027693, 2007. (10.1029/2006GL027693)
  22. Gaiero, D. M., Probst, J. L. , Depetris, P. J. , Bidart, S. M. and Leleyter, L. : Iron and other transition metals in Patagonian riverborne and windborne materials: Geochemical control and transport to the southern South Atlantic Ocean, Geochim. Cosmochim. Acta, 67(19), 3603-3623, 2003. (10.1016/S0016-7037(03)00211-4)
  23. Gaiero, D. M.: Dust provenance in Antarctic ice during glacial periods: From where in southern South America?, Geophys. Res. Lett., 34, L17707, https://doi.org/10.1029/2007GL030520, 2007. (10.1029/2007GL030520)
  24. Guo, Y., Chang, E. K. M., and Leroy, S. S. : How strong are the Southern Hemisphere storm tracks?, Geophys. Res. Lett., 36, L22806, https://doi.org/10.1029/2009GL040733,2009. (10.1029/2009GL040733)
  25. Herman, M., Deuz' e, J.-L., Marchand, A., Roger, B., and Lallart, P.: Aerosol remote sensing 5 from POLDER//ADEOS over the ocean: Improved retrieval using a nonspherical particle model, J. Geophys. Res., 110, D10S02, https://doi.org/10.1029/2004JD004798, 2005. (10.1029/2004JD004798)
  26. Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., Laroche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67–71, 2005. (10.1126/science.1105959)
  27. Jones, D. A. and Simmonds, I.: A climatology of Southern Hemisphere extratropical cyclones. Clim. Dynam., 9, 131–145, 1993 (10.1007/BF00209750)
  28. Isla, F. I., Vilas, F. E., Bujalesky, G. G., Ferrero, M., Gonzalez Bonorino, G., and Arche Miralles, A.: Gravel drift and wind effects on the macrotidal San Sebastian Bay, Tierra del Fuego, Argentina. Mar. Geol., 97:211-224,1991 (10.1016/0025-3227(91)90027-2)
  29. Kahn, R. A., Gaitley, B., Martonchik, J., Diner, D., Crean, K., and Holben, B.: MISR global aerosol optical depth validation based on two years of coincident AERONET observations. J. Geophys. Res., 110, D10S04, https://doi.org/10.1029/2004JD004706,2005 (10.1029/2004JD004706)
  30. Kalashnikova, O. V. and Kahn, R. A.: Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals, J. Geophys. Res., 113, D24204, https://doi.org/10.1029/008JD010083,2008. (10.1029/2008JD010083)
  31. Kanamitsu, M.: Description of the NMC global data assimilation and forecast system, Weather Forecast., 4, 335–342,1989. (10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2)
  32. Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosols in the climate system, Rev.. Nature, 419, 215–223,2002. (10.1038/nature01091)
  33. Kaufman, Y. J., Koren, I. , Remer, L. A., Tanré, D., Ginoux, P., and Fan, S.: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res., 110, D10S12, https://doi.org/10.1029/2003JDO04436, 2005 (10.1029/2003JD004436)
  34. Kalnay, E., Kanamitsu, M., Kistler, R., et al.: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77, 437–471, 1996. (10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2)
  35. King, J. C. and Turner, J.: Antarctic meteorology and climate, Cambridge University Press, UK, ISBN 0-521-46560-5, 1997
  36. Kleidman, R. G., O'Neill, N. T., Remer, L. A., Kaufman, Y. J., Eck, T. F., T. F., Tanré, D., Dubovik, O., and Holben, B. N.: Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean, J. Geophys. Res., 110, D22205, https://doi.org/10.1029/2005JD005760,2005 (10.1029/2005JD005760)
  37. König-Langlo, G. and Weller, R.: The GAW Global Observatory Neumayer, Antarctica, World Meteorological Organzation. The German Contribution to the WMO GAW Programme, 167, 16–20, 2006.
  38. Krinner, G., Petit, J.-R., and Delmonte, B.: Altitude of atmospheric tracer transport towards Antarctica in present and glacial climate. Quat. Sci. Rev., 29(1–2), 274–284, https://doi.org/10.1016/j.quascirev.2009.06.020, 2010 (10.1016/j.quascirev.2009.06.020)
  39. Labraga, J.C. : On extreme winds in Pampa del Castillo plateau, Patagonia Argentina, with reference to wind farms settlement. J. App. Meteo., 33, (1), 85-95,1994. (10.1175/1520-0450(1994)033<0085:EWITPD>2.0.CO;2)
  40. Lambert, F., Delmonte, B., Petit, J.-R., Bigler, M., Kaufmann, P., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V.: Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core, Nature, 452, 616–619, https://doi.org/10.1038/nature06763, 2008. (10.1038/nature06763)
  41. Levitus, S., Antonov, J., and Boyer, T.: Warming of the world ocean, : 1955–2003, Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592, 2005. (10.1029/2004GL021592)
  42. Li, F., Ginoux, P., and Ramaswamy, V.: Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources, J. Geophys. Res., 113, D10207, https://doi.org/10.1029/2007JD009190,2008. (10.1029/2007JD009190)
  43. McConnell, J. R. , Aristarain, A. J., Banta, J. R., Edwards, P. R., and Simoes, J. C.: 20th Century Doubling in Dust Archived in an Antarctic Peninsula Ice Core PZrallels Climate Change and Desertification in South America, Proc. Natl. Acad. Sci., 104(14), 5732–5748. https://doi.org/10.1073pnas.0607657104, 2008. (10.1073/pnas.0607657104)
  44. Mallet, M., Chami, M. ,Gentili, B., Sempéré, R., and Dubuisson, P.: Impact of sea-surface dust radiative forcing on the oceanic primary production: A 1D modeling approach applied to the West African coastal waters, Geophys. Res. Lett., 36, L15828, https://doi.org/10.1029/2009GL039053, 2009. (10.1029/2009GL039053)
  45. Mahowald, N. M., Sebastian, E., Luo, C., et al.: Atmospheric iron deposition: global distribution, variability, and human perturbations, Ann. Rev. Mar. Sci., 1, 245–278, 2009. (10.1146/annurev.marine.010908.163727)
  46. Mahowald, N. M., Ballantine, J. A., Feddema, J., and Ramankutty, N.: Global trends in visibility: implications for dust sources, Atmos. Chem. Phys., 7, 3309–3339, 2007 (10.5194/acp-7-3309-2007)
  47. Mahowald, N. and Dufresne, J.-L.: Sensitivity of TOMS AI to PBLH: Implications for detection of mineral aerosol sources, 31, L03103, https://doi.org/10.1029/2003GL018865, 2004. (10.1029/2003GL018865)
  48. Marino, F., Castellano, E., Ceccato, D., De Deckker, P., Delmonte, B., Ghermandi, G., Maggi, V., Petit, J., Revel-Rolland, M., and Udisti, R.: Defining the geochemical composition of the epica dome c ice core dust during the last glacial-interglacial cycle, Geochem. Geophys. Geosyst., 9, Q10018, https://doi.org/10.1029/2008GC002023, 2008. (10.1029/2008GC002023)
  49. Marino, F., Calzolai, G., Caporali, S., Castellano, E., Chiari, M., Lucarelli, F., Maggi, V., Nava, S., Sala, M., Udisti, R.: PIXE and PIGE techniques for the analysis of Antarctic ice dust and continental sediments, Nucl. Instr. Meth. Phys. Res. B, 266, 2396–2400. https://doi.org/10.1016/j.nimb.2008.03.029., 2008b. (10.1016/j.nimb.2008.03.029)
  50. Martins, J. V., Tanré, D., Remer, L. A., Kaufman, Y. J., Mattoo, S., and Levy, R: MODIS cloud screening for remote sensing of aerosol over oceans using spatial variability. Geophys. Res. Lett., 29(12), 8009, https://doi.org/10.1029/2001GL01352, 2002. (10.1029/2001GL013252)
  51. Martin, J. H. : Glacial-Interglacial CO2 Change: The Iron Hypothesis, Paleoceanography, 5, 1–13,1990. (10.1029/PA005i001p00001)
  52. Miller, R. L., Tegen, I., and Perlwitz, J.: Surface radiative forcing by soil dust aerosols and the hydrologic cycle, J. Geophys. Res., 109, D04203, https://doi.org/10.1029/2003JD004085, 2004. (10.1029/2003JD004085)
  53. Morganti, A., Becagli, S., Castellano, E., Severi, M., Traversi, R., and Udisti, R.: An improved flow analysis-ion chromatography method for determination of cationic and anionic species at trace levels in Antarctic ice cores, Anal. Chim. Acta, 2007, 603, 190–198, 2007. (10.1016/j.aca.2007.09.050)
  54. Okin, G. S., Mahowald, N., Chadwick, O. A., and Artaxo, P.: Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems, Global Biogeochem. Cy., 18, GB2005, doi10.1029/2003GB002145, 2004. (10.1029/2003GB002145)
  55. Ruth, U., Barbante, C., Bigler, M., Delmonte, B., Fischer, H., Gabrielli, P., et al.: Proxies and measurement techniques for mineral dust in Antarctic ice cores, Environ. Sci. Tech., 42, 5675–5681, 2008. (10.1021/es703078z)
  56. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.: Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436,1999. (10.1038/20859)
  57. Pereira E. B., Evangelista, H., Pereira, K. C. D., Cavalcanti, I. F. A., and Setzer, A. W.: Apportionment of black carbon in the South Shetland Islands, Antarctic Peninsula, J. Geophys. Res., 111, D03303, https://doi.org/10.1029/2005JD006086, 2006. (10.1029/2005JD006086)
  58. Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products and validation, J. Atmos. Sci., 62(4), 947–973, 2005. (10.1175/JAS3385.1)
  59. Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, NJ, USA, 526 pp., 2006.
  60. Sala M., Delmonte, B., Frezzotti, M., Proposito, M., Scarchilli, C., Maggi, V., Artioli, G., Dapiaggi, M., Marino, F., Ricci, P. C., De Giudici, G.: Evidence of calcium carbonates in coastal (Talos Dome and Ross Sea area) East Antarctica snow and firn: environmental and climatic implications, Earth Planet. Sci. Lett., 271, 43–52, 2008. (10.1016/j.epsl.2008.03.045)
  61. Spinhirne, J. D., Palm, S. P., Hart, W. D., Hlavka, D. L., and Welton, E. J.: Cloud and aerosol measurements from GLAS: Overview and initial results, Geophys. Res. Lett., 32, L22S03, https://doi.org/10.1029/2005GL023507, 2005. (10.1029/2005GL023507)
  62. Sokolik, I., Winker, D. M., Bergametti, G., Gillette, D. A., Carmichael, G., and co-authors: Outstanding problems in quantifying the radiative impact of mineral dust, J. Geophys. Res., 106, 18015–18028, 2001. (10.1029/2000JD900498)
  63. Swap, R., Garstang, M., Greco, S., Talbot, R., and Kallberg, P.: Saharan Dust in the Amazon Basin, Tellus, v. 44B, 133–149, 1992. (10.1034/j.1600-0889.1992.t01-1-00005.x)
  64. Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., et al.: Climatological mean and decadal changes in surface ocean pCO2 , and net sea-air CO2 ?ux over the global oceans, Deep-Sea Res. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009. (10.1016/j.dsr.2009.07.007)
  65. Tegen, I., Lacis, A. A., and Fung, I.: The influence of mineral aerosols from disturbed soils on the global aerosol radiation budget, Nature, 380, 419–422, 1996. (10.1038/380419a0)
  66. Torres O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., Veefkind, P., and Levelt, P.: Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview, J. Geophys. Res., 112, D24S47, https://doi.org/10.1029/2007JD008809, 2007. (10.1029/2007JD008809)
  67. Udisti, R., Becagli, S., Benassai, S., Castellano, E., Fattori, I., Innocenti, M., Migliori, A., and Traversi, R.: Atmosphere-snow interaction by a comparison between aerosol and uppermost snow-layers composition at Dome C, East Antarctica, 39, 2005, Ann. Glaciol., 53–61, 2004. (10.3189/172756404781814474)
  68. Vilas, F., Arche, A., Ferrero, M., and Isla, F.: Subantarctic macrotidal flats, cheniers and beaches in San Sebastián Bay, Tierra del Fuego, Argentina, Mar. Geol., 160, 301–326, 1999. (10.1016/S0025-3227(99)00021-3)
  69. Watson, A., Bakker, D., Ridgwell, A., Boyd, P., and Law, C.: Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2, Nature, 407, 730–733,2000. (10.1038/35037561)
  70. Weller, R. and Lampert, A.: Optical properties of tropospheric aerosol and sulfate scattering efficiency measured at Neumayer Station, Antarctica. Online supplement to Weller and Lampert, 2000b available online at Publishing Network for Geoscientific &amp; Environmental Data, http://doi.pangaea.de/10.1594/PANGAEA.695429, https://doi.org/10.1594/PANGAEA.695432, 2008a.
  71. Weller, R. and Lampert, A: Optical properties and sulfate scattering efficiency of boundary layer aerosol at coastal Neumayer Station, Antarctica. J. Geophy. Res, 113, D16208, https://doi.org/10.1029/2008JD009962, 2008b. (10.1029/2008JD009962)
  72. Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Röthlisberger, R., et al.: Southern ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles, Nature, 440, 491–496, 2006. (10.1038/nature04614)
  73. Xian, P., Reid, J. S. , Turk, J. F., Hyer, E. J., and Westphal, D. L., Impact of modeled versus satellite measured tropical precipitation on regional smoke optical thickness in an aerosol transport model, Geophys. Res. Lett., 36, L16805, https://doi.org/10.1029/2009GL038823, 2009. (10.1029/2009GL038823)
  74. Yu, H., Chin, M., Remer, L., Kleidman, R., Bellouin, N., Bian, H., and Dieh, T.: Variability of marine aerosol fine-mode fraction and estimates of anthropogenic aerosol component over cloud-free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 114, D10206, doi10.1029/2008JD010648, 2009. (10.1029/2008JD010648)
  75. Zhang, J., Reid, J. S., and Holben, B. N.: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products, Geophys. Res. Lett., 32, L15803, https://doi.org/10.1029/2005GL023254, 2005. (10.1029/2005GL023254)
  76. Zhang, J. and Reid., J. S.: MODIS Aerosol Product Analysis for Data Assimilation: Assessment of Level 2 Aerosol Optical Thickness Retrievals, J. Geophys. Res., 111, D22207, https://doi.org/10.1029/2005JD006898, 2006. (10.1029/2005JD006898)
Dates
Type When
Created 15 years ago (Sept. 6, 2010, 4:01 a.m.)
Deposited 6 months, 3 weeks ago (Feb. 15, 2025, 5:33 p.m.)
Indexed 3 weeks, 3 days ago (Aug. 12, 2025, 5:27 p.m.)
Issued 15 years ago (Sept. 6, 2010)
Published 15 years ago (Sept. 6, 2010)
Published Online 15 years ago (Sept. 6, 2010)
Funders 0

None

@article{Gass__2010, title={A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica}, volume={10}, ISSN={1680-7324}, url={http://dx.doi.org/10.5194/acp-10-8287-2010}, DOI={10.5194/acp-10-8287-2010}, number={17}, journal={Atmospheric Chemistry and Physics}, publisher={Copernicus GmbH}, author={Gassó, S. and Stein, A. and Marino, F. and Castellano, E. and Udisti, R. and Ceratto, J.}, year={2010}, month=sep, pages={8287–8303} }