Abstract
Abstract. The influence of varying levels of water mixing ratio, r, during the formation of secondary organic aerosol (SOA) from the ozonolysis of α-pinene on the SOA hygroscopicity and volatility was investigated. The reaction proceeded and aerosols were generated in a mixing chamber and the hygroscopic characteristics of the SOA were determined with the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and a Cloud Condensation Nuclei counter (CCNc). In parallel, a High-Resolution Time-of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) located downstream of a thermodenuder (TD) sampling from the mixing chamber, to collect mass spectra of particles from the volatile and less-volatile fractions of the SOA. Results showed that both hygroscopic growth and the volatile fraction of the SOA increased with increases in r inside the mixing chamber during SOA generation. An effective density of 1.40 g cm−3 was observed for the generated SOA when the reaction proceeded with r>1 g kg−1. Changes in the concentrations of the fragment CO2+ and the sum of CxHyOz+ (short name CHO) and CxHy+ (short name CH) fragments as measured by the HR-ToF-AMS were used to estimate changes in the oxidation level of the SOA with reaction conditions, using the ratios CO2+ to CH and CHO to CH. Under humid conditions, both ratios increased, corresponding to the presence of more oxygenated functional groups (i.e., multifunctional carboxylic acids). This result is consistent with the α-pinene ozonolysis mechanisms which suggest that water interacts with the stabilized Criegee intermediate. The volatility and the hygroscopicity results show that SOA generation via ozonolysis of α-pinene in the presence of water vapour (r<16.9 g kg−1) leads to the formation of more highly oxygenated compounds that are more hygroscopic and more volatile than compounds formed under dry conditions.
Bibliography
Poulain, L., Wu, Z., Petters, M. D., Wex, H., Hallbauer, E., Wehner, B., Massling, A., Kreidenweis, S. M., & Stratmann, F. (2010). Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols â Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols. Atmospheric Chemistry and Physics, 10(8), 3775â3785.
References
55
Referenced
48
-
Aklilu, Y., Mozurkewich, M., Prenni, A. J., Kreidenweis, S. M., Alfarra, M. R., Allan, J. D., Anlauf, K., Brook, J., Leaitch, W. R., Sharma, S., Boudries, H., and Worsnop, D. R.: Hygroscopicity of particles at two rural, urban influenced sites during Pacific 2001: Comparison with estimates of water uptake from particle composition, Atmos. Environ., 40, 2650–2661, https://doi.org/10.1016/j.atmosenv.2005.11.063, 2006.
(
10.1016/j.atmosenv.2005.11.063
) -
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, 1989.
(
10.1126/science.245.4923.1227
) -
Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, 2006.
(
10.5194/acp-6-5279-2006
) -
An, W. J., Pathak, R. K., Lee, B. H., and Pandis, S. N.: Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol, J. Aerosol Sci., 38, 305–314, https://doi.org/10.1016/j.jaerosci.2006.12.002, 2007.
(
10.1016/j.jaerosci.2006.12.002
) -
Asa-Awuku, A., Engelhart, G. J., Lee, B. H., Pandis, S. N., and Nenes, A.: Relating CCN activity, volatility, and droplet growth kinetics of $\\beta $-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795–812, 2009.
(
10.5194/acp-9-795-2009
) -
Bahreini, R., Keywood, M. D., Ng, N. L., Varutbangkul, V., Gao, S., Flagan, R. C., Seinfeld, J. H., Worsnop, D. R., and Jimenez, J. L.: Measurements of secondary organic aerosol from oxidation of cycloalkenes, terpenes, and m-xylene using an Aerodyne aerosol mass spectrometer, Environ. Sci. Technol., 39, 5674–5688, https://doi.org/10.1021/Es048061a, 2005.
(
10.1021/es048061a
) -
Baltensperger, U., Kalberer, M., Dommen, J., Paulsen, D., Alfarra, M. R., Coe, H., Fisseha, R., Gascho, A., Gysel, M., Nyeki, S., Sax, M., Steinbacher, M., Prévôt, A. S. H., Sjogren, S., Weingartner, E., and Zenobi, R.: Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265–278, https://doi.org/10.1039/b417367h, 2005.
(
10.1039/b417367h
) -
Berndt, T., Böge, O., and Stratmann, F.: Gas-phase ozonolysis of alpha-pinene: gaseous products and particle formation, Atmos. Environ., 37, 3933–3945, https://doi.org/10.1016/S1352-2310(03)00501-6, 2003.
(
10.1016/S1352-2310(03)00501-6
) -
Capouet, M. and Müller, J. F.: A group contribution method for estimating the vapour pressures of alpha-pinene oxidation products, Atmos. Chem. Phys., 6, 1455–1467, 2006.
(
10.5194/acp-6-1455-2006
) -
Chattopadhyay, S., and Ziemann, P. J.: Vapor pressures of substituted and unsubstituted monocarboxylic and dicarboxylic acids measured using an improved thermal desorption particle beam mass spectrometry method, Aerosol Sci. Technol., 39, 1085–1100, https://doi.org/10.1080/02786820500421547, 2005.
(
10.1080/02786820500421547
) -
Cocker, D. R., Clegg, S. L., Flagan, R. C., and Seinfeld, J. H.: The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system, Atmos. Environ., 35, 6049–6072, 2001.
(
10.1016/S1352-2310(01)00404-6
) -
DeCarlo, P., Slowik, J. G., Worsnop, D. R., Davidovits, P., and Jimenez, J. L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurments. Part1: Theory, Aerosol Sci. Technol., 38, 1185–1205, https://doi.org/10.1080/027868290903907, 2004.
(
10.1080/02786826.2004.10399461
) -
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
(
10.1021/ac061249n
) -
Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpernes with O3, Environ. Sci. Technol., 39, 4049–4059, https://doi.org/10.1021/es050228s, 2005.
(
10.1021/es050228s
) -
Duplissy, J., Gysel, M., Alfarra, M. R., Dommen, J., Metzger, A., Prévôt, A. S. H., Weingartner, E., Laaksonen, A., Raatikainen, T., Good, N., Turner, S. F., McFiggans, G., and Baltensperger, U.: Cloud forming potential of secondary organic aerosol under near atmospheric conditions, Geophys. Res. Lett., 35, L03818, https://doi.org/10.1029/2007GL031075, 2008.
(
10.1029/2007GL031075
) -
Fick, J., Pommer, L., Nilsson, C., and Andersson, B.: Effect of OH radicals, relative humidity, and time on the composition of the products formed in the ozonolysis of α-pinene, Atmos. Environ., 37, 4087–4096, https://doi.org/10.1016/S1352-2310(03)00522-3, 2003.
(
10.1016/S1352-2310(03)00522-3
) -
Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, 2007.
(
10.5194/acp-7-6131-2007
) -
Hennig, T., Massling, A., Brechtel, F. J., and Wiedensohler, A.: A Tandem DMA for highly temperature-stabilized hygroscopic particle growth measurements between 90{} relative humidity, J. Aerosol Sci., 36, 1210–1223, https://doi.org/10.1016/j.jaerosci.2005.01.005, 2005.
(
10.1016/j.jaerosci.2005.01.005
) -
Hersey, S. P., Sorooshian, A., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Aerosol hygroscopicity in the marine atmosphere: a closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data, Atmos. Chem. Phys., 9, 2543–2554, 2009.
(
10.5194/acp-9-2543-2009
) -
Iinuma, Y., Böge, O., Gnauk, T., and Herrmann, H.: Aerosol-chamber study of the alpha-pinene/O3 reaction: influence of particle acidity on aerosol yields and products, Atmos. Environ., 38, 761–773, https://doi.org/10.1016/j.atmosenv.2003.10.015, 2004.
(
10.1016/j.atmosenv.2003.10.015
) -
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb, C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol., 33, 49–70, 2000.
(
10.1080/027868200410840
) -
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambiant aerosol sampling using an Aerodyne Mass Spectrometer, J. Geophys. Res.-Atmosp., 108, 8425, https://doi.org/10.1029/2001JD001213, 2003.
(
10.1029/2001JD001213
) -
Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Impact of humidity on the ozone initiated oxidation of limonene, $\\Delta^{3}$-carene, and $\\alpha $-pinene, Environ. Sci. Technol., 40, 188–194, https://doi.org/10.1021/es051163w, 2006.
(
10.1021/es051163w
) -
Jonsson, A. M., Hallquist, M., and Saathoff, H.: Volatility of secondary organic aerosols from the ozone initiated oxidation of α-pinene and limonene, J. Aerosol Sci., 38, 843–852, https://doi.org/10.1016/j.jaerosci.2007.06.008, 2007.
(
10.1016/j.jaerosci.2007.06.008
) -
Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Influence of OH scavenger on the water effect on secondary organic aerosol formation from ozonolysis of limonene, $\\Delta^{3}$-carene, and α-pinene, Environ. Sci. Technol., 42, 5938–5944, https://doi.org/10.1021/es702508y, 2008.
(
10.1021/es702508y
) -
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, 2005.
(
10.5194/acp-5-1053-2005
) -
King, S. M., Rosenoern, T., Shilling, J. E., Chen, Q., and Martin, S. T.: Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959–2972, 2009.
(
10.5194/acp-9-2959-2009
) -
Koustenidou, E., Pathak, R. V., and Pandis, S. N.: An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data, Aerosol Sci. Technol., 41, 1002–1010, https://doi.org/10.1080/02786820701666270, 2007.
(
10.1080/02786820701666270
) -
Ma, Y., Russell, A. T., and Marston, G.: Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene, Phys. Chem. Chem. Phys., 10, 4294–4312, https://doi.org/10.1039/b803283a, 2008.
(
10.1039/b803283a
) -
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., Hallquist, M., Baltensperger, U., and Ristvoski, Z. D.: Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles, Atmos. Chem. Phys., 9, 721–732, 2009.
(
10.5194/acp-9-721-2009
) -
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Q. J. Roy. Meteor. Soc., 131, 1539–1565, https://doi.org/10.1256/Qj.04.94, 2005.
(
10.1256/qj.04.94
) -
Petters, M. D., Snider, J. R., Stevens, B., Vali, G., Faloona, I., and Russell, L. M.: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer, J. Geophys. Res.-Atmosp., 111, D02206, https://doi.org/10.1029/2004jd005694, 2006.
(
10.1029/2004JD005694
) -
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, 2007.
(
10.5194/acp-7-1961-2007
) -
Petters, M. D., Wex, H., Hallberger, E., Poulain, L., Carrico, C. M., McMeeking, G. R., Kreidenweis, S. M., Stratmann, F., and Massling, A.: Towards closing the gap between hygroscopicity and activation for secondary organic aerosol: Part II – theorical approaches, Atmos. Chem. Phys., 9, 3999–4009, 2009.
(
10.5194/acp-9-3999-2009
) -
Pommer, L., Fick, J., Andersson, B., and Nilsson, C.: The influence of O3, relative humidity, NO and NO2 on the oxidation of $\\alpha $-pinene and $\\Delta ^{3}$-carene, J. Atmos. Chem., 48, 173–189, 2004.
(
10.1023/B:JOCH.0000036847.09169.4a
) -
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol, J. Geophys. Res.-Atmosp., 112, D10223, https://doi.org/10.1029/2006jd007963, 2007.
(
10.1029/2006JD007963
) -
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206–221, https://doi.org/10.1080/027868290913988, 2005.
(
10.1080/027868290913988
) -
Saathoff, H., Naumann, K. H., Möhler, O., Jonsson, Ã. M., Hallquist, M., Kiendler-Scharr, A., Mentel, T. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene, Atmos. Chem. Phys., 9, 1551–1577, 2009.
(
10.5194/acp-9-1551-2009
) -
Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., McKinney, K. A., and Martin, S. T.: Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene, Atmos. Chem. Phys., 8, 2073–2088, 2008.
(
10.5194/acp-8-2073-2008
) -
Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., DeCarlo, P. F., Aiken, A. C., Sueper, D., Jimenez, J. L., and Martin, S. T.: Loading-dependent elemental composition of $\\alpha $-pinene SOA particles, Atmos. Chem. Phys., 771–782, 2009.
(
10.5194/acp-9-771-2009
) -
Shinozuka, Y., Clarke, A. D., DeCarlo, P. F., Jimenez, J. L., Dunlea, E. J., Roberts, G. C., Tomlinson, J. M., Collins, D. R., Howell, S. G., Kapustin, V. N., McNaughton, C. S., and Zhou, J.: Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6727–6742, 2009.
(
10.5194/acp-9-6727-2009
) -
Stanier, C. O., Pathak, R. K., and Pandis, S. N.: Measurements of the volatility of aerosols from α-pinene ozonolysis, Environ. Sci. Technol., 41, 2756–2763, https://doi.org/10.1021/es0519280, 2007.
(
10.1021/es0519280
) -
Stratmann, F., Kiselev, A., Wurzler, S., Wendisch, M., Heintzenberg, J., Charlson, R. J., Diehl, K., Wex, H., and Schmidt, S.: Laboratory studies and numerical simulations of cloud droplet formation under realistic super-saturation conditions, J. Atmos. Ocean. Tech., 21, 876–887, https://doi.org/10.1175/1520-0426(2004)021, 2004.
(
10.1175/1520-0426(2004)021<0876:LSANSO>2.0.CO;2
) -
Sullivan, R. C. and Prather, K. A.: Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation, Anal. Chem., 77, 3861–3885, https://doi.org/10.1021/ac050716i, 2005.
(
10.1021/ac050716i
) -
Takegawa, N., Miyakawa, T., Kawamura, K., and Kondo, Y.: Contribution of selected dicarboxylic and ω-Oxocarboxylic acids in ambient aerosol to the $m/z$ 44 signal of an Aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41, 418–437, https://doi.org/10.1080/02786820701203215, 2007.
(
10.1080/02786820701203215
) -
Twomey, S.: Influence of Pollution on the Shortwave Albedo of Clouds, J. Aerosol Sci., 34, 1149–1152, 1977.
(
10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
) -
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, 2006.
(
10.5194/acp-6-2367-2006
) -
Vesna, O., Sjogren, S., Weingartner, E., Samburova, V., Kalberer, M., Gaggeler, H. W., and Ammann, M.: Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions, Atmos. Chem. Phys., 8, 4683–4690, 2008.
(
10.5194/acp-8-4683-2008
) -
Warscheid, B., and Hoffmann, T.: On-line measurements of α-pinene ozonolysis products using an atmospheric pressure chemical ionisation ion-trap mass spectrometer, Atmos. Environ., 35, 2927–2940, 2001.
(
10.1016/S1352-2310(00)00513-6
) -
Wehner, B., Philippin, S., and Wiedensohler, A.: Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles, J. Aerosol Sci., 33, 1087–1093, 2002.
(
10.1016/S0021-8502(02)00056-3
) -
Wex, H., Kiselev, A., Stratmann, F., and Zoboki, J.: Measured and modeled equilibrium sizes of NaCl and (NH4)2SO4 particles at relative humidities up to 99.1{%}, J. Geophys. Res.-Atmosp., 110, D21212, https://doi.org/10.1029/2004JD005507, 2005.
(
10.1029/2004JD005507
) -
Wex, H., Petters, M. D., Hallberger, E., Poulain, L., Carrico, C. M., McMeeking, G. R., Kreidenweis, S. M., Stratmann, F., and Massling, A.: Towards closing the gap between hygroscopicity growth factor and activation of secondary organic aerosol: Part I - Evidence of measurements, Atmos. Chem. Phys., 9, 3987–3997, 2009.
(
10.5194/acp-9-3987-2009
) -
Wu, Z., Poulain, L., Wehner, B., Wiedensohler, A., and Herrmann, H.: Characterization of the volatile fraction of laboratory-generated aerosol particles by thermodenuder-Aerosol Mass Spectrometer coupling experiments, J. Aerosol Sci., 40, 603-612, https://doi.org/10.1016/j.jaerosci.2009.03.007, 2009.
(
10.1016/j.jaerosci.2009.03.007
) -
Yu, Y., Ezell, M. J., Zelenyuk, A., Imre, D., Alexander, L., Ortega, J., D'Anna, B., Harmon, C. W., Johnson, S. N., and Finlayson-Pitts, B. J.: Photooxidation of α-pinene at high relative humidity in the presence of increasing concentrations of NOx, Atmos. Environ., 42, 5044–5060, https://doi.org/10.1016/j.atmosenv.2008.02.026, 2008.
(
10.1016/j.atmosenv.2008.02.026
) -
Zelenyuk, A., Yang, J., Song, C., Zaveri, R. A., and Imre, D.: A New Real-Time Method for Determining Particles' Sphericity and Density: Application to Secondary Organic Aerosol Formed by Ozonolysis of $\\alpha $-Pinene, Environ. Sci. Technol., 42, 8033–8038, https://doi.org/10.1021/es8013562, 2008.
(
10.1021/es8013562
)
Dates
Type | When |
---|---|
Created | 15 years, 4 months ago (April 29, 2010, 10:24 a.m.) |
Deposited | 6 months, 2 weeks ago (Feb. 15, 2025, 7:05 p.m.) |
Indexed | 1 day, 18 hours ago (Sept. 2, 2025, 6:42 a.m.) |
Issued | 15 years, 4 months ago (April 23, 2010) |
Published | 15 years, 4 months ago (April 23, 2010) |
Published Online | 15 years, 4 months ago (April 23, 2010) |
@article{Poulain_2010, title={Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols – Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols}, volume={10}, ISSN={1680-7324}, url={http://dx.doi.org/10.5194/acp-10-3775-2010}, DOI={10.5194/acp-10-3775-2010}, number={8}, journal={Atmospheric Chemistry and Physics}, publisher={Copernicus GmbH}, author={Poulain, L. and Wu, Z. and Petters, M. D. and Wex, H. and Hallbauer, E. and Wehner, B. and Massling, A. and Kreidenweis, S. M. and Stratmann, F.}, year={2010}, month=apr, pages={3775–3785} }