Crossref journal-article
SAE International
SAE International Journal of Passenger Cars - Electronic and Electrical Systems (2796)
Bibliography

Taheri, P., & Bahrami, M. (2012). Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 5(1), 164–176.

Authors 2
  1. Peyman Taheri (first)
  2. Majid Bahrami (additional)
References 27 Referenced 58
  1. Hossain, S., in Handbook of batteries, 2nd ed., Linden, D., Editor, p. 36.1, McGraw-Hill, New York (1995).
  2. Lee, K.H., Song, E.H., Lee, J.Y., Jung, B.H., and Lim, H.S., “Mechanism of gas build-up in a Li-ion cell at elevated temperature,” J. Power Sources, Vol. 132, pp. 201-205 (2004). (10.1016/j.jpowsour.2004.01.042)
  3. Mandal, B.K. et. al, “Thermal runaway inhibitors for lithium battery electrolytes,” J. Power Sources, Vol. 161, pp. 1341-1345 (2006). (10.1016/j.jpowsour.2006.06.008)
  4. Thapa, A.K. et. al, “Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system,” Electrochem. Acta, Vol. 55, pp. 7305-7309 (2010).
  5. Zhang, S.S., “A new approach toward improved low temperature performance of Li-ion batteries,” Electrochem. Comm., Vol. 4, pp. 928-932 (2002). (10.1016/S1388-2481(02)00490-3)
  6. Inui, Y., Kobayashi, Y., Watanabe, Y., Watase, Y., Kitamura, Y., “Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries,” Energy Conversion and Management, Vol. 48, pp. 2103-2109 (2007). (10.1016/j.enconman.2006.12.012)
  7. Al-Hallaj, S. and Selman, J.R., “Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications,” J. Power Sources, Vol. 110, pp. 341-348 (2002).
  8. Kim, G.-H., Pesaran, A., and Spotnitz, R., “A three-dimensional thermal abuse model for lithium-ion cells,” J. Power Sources, Vol. 170, pp. 476-489 (2007). (10.1016/j.jpowsour.2007.04.018)
  9. Botte, G.G., Subramanian, V.R., and White, R.E., “Mathematical modeling of secondary lithium batteries,” Electrochem. Acta, Vol. 45, pp. 2595-2609 (2000). (10.1016/S0013-4686(00)00340-6)
  10. Bandhauer, T.M., Garimella, S., and Fuller, T.F., “A critical review of thermal issues in lithium-ion batteries,” J. Electrochem. Soc., pp. R1-R25 (2011). (10.1149/1.3515880)
  11. Pals, C.R. and Newman, J., “Thermal modeling of the lithium/polymer battery: II. Temperature profiles in a cell stack,” J. Electrochem. Soc., Vol. 142, pp. 3282-3288 (1995).
  12. Chen, Y. and Evans, J. W., “Heat transfer phenomena in Lithium/Polymer-electrolyte batteries for electric vehicle application,” J. Electrochem. Soc., Vol. 140, pp. 1833-1838 (1993).
  13. Song, L. and Evans, J.W., “The thermal stability of lithium polymer batteries,” J. Electrochem. Soc., Vol. 145, pp. 2327-2334 (1998).
  14. Kim, U.S., Shin, C.B., and Kim, C.-S., “Modeling for the scale-up of a lithium-ion polymer battery,” J. Power Sources, Vol. 189, pp. 841-846 (2009). (10.1016/j.jpowsour.2008.10.019)
  15. Lee, J., Choi, K.W., Yao, N.P., and Christianson, C.C., “Three-dimensional thermal modeling of electric vehicle batteries,” J. Electrochem. Soc., Vol. 133, pp. 1286-1291 (1986). (10.1149/1.2108855)
  16. Chen, Y. and Evans, J.W., “Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile,” J. Electrochem. Soc., Vol. 141, pp. 2947-2955 (1994).
  17. Chen, Y. and Evans, J.W., “Thermal analysis of lithium-ion batteries,” J. Electrochem. Soc., Vol. 143, pp. 2708-2712 (1996).
  18. Chen, S.C., Wan, C.C., and Wang, Y.Y., “Thermal analysis of lithium-ion batteries,” J. Power Sources, Vol. 140, pp. 111-124 (2005). (10.1016/j.jpowsour.2004.05.064)
  19. Newman, J. and Tiedemann, W., “Temperature rise in a battery module with constant heat generation,” J. Electrochem. Soc., Vol. 142, pp. 1054-1057 (1995).
  20. Özişik, M.N., Heat conduction, 2nd ed., John Wiley & Sons, New York (1993).
  21. Carslaw, H.S. and Jaeger, J.C., Conduction of heat in solids, 2nd ed., Clarendon Press, Oxford (1959).
  22. Cooper, H.F., “Transient and steady-state temperature distribution in foil-wound solenoids and other electric apparatus of rectangular cross section,” IEEE Transaction on parts, materials and packaging, Vol. 2, pp. 3-9 (1966). (10.1109/TPMP.1966.1135547)
  23. Bernardi, D., Pawlikowski, E., and Newman, J., “A general energy balance for battery systems,” J. Electrochem. Soc., Vol. 132, pp. 5-12 (1985). (10.1149/1.2113792)
  24. Rao, L. and Newman, J., “Heat-generation rate and general energy balance for insertion battery systems,” J. Electrochem. Soc., Vol. 144, pp. 2697-2704 (1997).
  25. Yurkovich, B.J., Yurkovich, S., Guezennec, Y., and Hu, Y., “Electro-thermal battery modeling and identification for automotive applications,” Proceedings of the 2010 DSCC Conference, 2010.
  26. Sabbah, R., Kizilel, R., Selman, J.R., and Al-Hallaj, S., “Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution,” J. Power Sources, Vol. 182, pp. 630-638 (2008).
  27. Incropera, F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S., Fundamentals of heat and mass transfer, 6th ed., John Wiley & Sons., New York (2007).
Dates
Type When
Created 13 years, 4 months ago (April 13, 2012, 2:07 a.m.)
Deposited 6 years, 4 months ago (April 24, 2019, 2:33 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 20, 2025, 9:11 a.m.)
Issued 13 years, 4 months ago (April 16, 2012)
Published 13 years, 4 months ago (April 16, 2012)
Published Online 13 years, 4 months ago (April 16, 2012)
Funders 0

None

@article{Taheri_2012, title={Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach}, volume={5}, ISSN={1946-4622}, url={http://dx.doi.org/10.4271/2012-01-0334}, DOI={10.4271/2012-01-0334}, number={1}, journal={SAE International Journal of Passenger Cars - Electronic and Electrical Systems}, publisher={SAE International}, author={Taheri, Peyman and Bahrami, Majid}, year={2012}, month=apr, pages={164–176} }