Crossref journal-article
Oxford University Press (OUP)
The Journal of Immunology (286)
Abstract

Abstract Like viruses, intracellular bacteria stimulate their host cells to produce type I IFNs (IFN-α and IFN-β). In our study, we investigated the signals and molecules relevant for the synthesis of and response to IFN by mouse macrophages infected with Listeria monocytogenes. We report that IFN-β is the critical immediate-early IFN made during infection, because the synthesis of all other type I IFN, expression of a subset of infection-induced genes, and the biological response to type I IFN was lost upon IFN-β deficiency. The induction of IFN-β mRNA and the IFN-β-dependent sensitization of macrophages to bacteria-induced death, in turn, was absolutely dependent upon the presence of the transcription factor IFN regulatory factor 3 (IRF3). IFN-β synthesis and signal transduction occurred in macrophages deficient for TLR or their adaptors MyD88, TRIF, or TRAM. Expression of Nod2, a candidate receptor for intracellular bacteria, increased during infection, but the protein was not required for Listeria-induced signal transduction to the Ifn-β gene. Based on our data, we propose that IRF3 is a convergence point for signals derived from structurally unrelated intracellular pathogens, and that L. monocytogenes stimulates a novel TLR- and Nod2-independent pathway to target IRF3 and the type I IFN genes.

Bibliography

Stockinger, S., Reutterer, B., Schaljo, B., Schellack, C., Brunner, S., Materna, T., Yamamoto, M., Akira, S., Taniguchi, T., Murray, P. J., Müller, M., & Decker, T. (2004). IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism. The Journal of Immunology, 173(12), 7416–7425.

Authors 12
  1. Silvia Stockinger (first)
  2. Benjamin Reutterer (additional)
  3. Barbara Schaljo (additional)
  4. Carola Schellack (additional)
  5. Sylvia Brunner (additional)
  6. Tilo Materna (additional)
  7. Masahiro Yamamoto (additional)
  8. Shizuo Akira (additional)
  9. Tadatsugu Taniguchi (additional)
  10. Peter J. Murray (additional)
  11. Mathias Müller (additional)
  12. Thomas Decker (additional)
References 76 Referenced 160
  1. Wathelet, M. G., C. H. Lin, B. S. Parekh, L. V. Ronco, P. M. Howley, T. Maniatis. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-β enhancer in vivo. Mol. Cell 1:507. [Published erratum appears in 1999 Mol. Cell 3:813.]. (10.1016/S1097-2765(00)80051-9)
  2. Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13:539. (10.1016/S1074-7613(00)00053-4)
  3. Levy, D. E., I. Marie, A. Prakash. 2003. Ringing the interferon alarm: differential regulation of gene expression at the interface between innate and adaptive immunity. Curr. Opin. Immunol. 15:52. (10.1016/S0952-7915(02)00011-0)
  4. Diebold, S. S., M. Montoya, H. Unger, L. Alexopoulou, P. Roy, L. E. Haswell, A. Al-Shamkhani, R. Flavell, P. Borrow, C. Reis e Sousa. 2003. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424:324. (10.1038/nature01783)
  5. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730. (10.1038/ni1087)
  6. Akira, S., H. Hemmi. 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85:85. (10.1016/S0165-2478(02)00228-6)
  7. Alexopoulou, L., A. C. Holt, R. Medzhitov, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732. (10.1038/35099560)
  8. Diebold, S. S., T. Kaisho, H. Hemmi, S. Akira, C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529. (10.1126/science.1093616)
  9. Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, S. Bauer. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526. (10.1126/science.1093620)
  10. Krug, A., G. D. Luker, W. Barchet, D. A. Leib, S. Akira, M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103:1433. (10.1182/blood-2003-08-2674)
  11. Lund, J., A. Sato, S. Akira, R. Medzhitov, A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513. (10.1084/jem.20030162)
  12. Girardin, S. E., I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne, G. Thomas, D. J. Philpott, P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:8869. (10.1074/jbc.C200651200)
  13. Ogura, Y., N. Inohara, A. Benito, F. F. Chen, S. Yamaoka, G. Nunez. 2001. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276:4812. (10.1074/jbc.M008072200)
  14. Vazquez-Boland, J. A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:584. (10.1128/CMR.14.3.584-640.2001)
  15. Cossart, P., H. Bierne. 2001. The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr. Opin. Immunol. 13:96. (10.1016/S0952-7915(00)00188-6)
  16. Decker, T., S. Stockinger, M. Karaghiosoff, M. Muller, P. Kovarik. 2002. IFNs and STATs in innate immunity to microorganisms. J. Clin. Invest. 109:1271. (10.1172/JCI0215770)
  17. Barsig, J., S. H. Kaufmann. 1997. The mechanism of cell death in Listeria monocytogenes-infected murine macrophages is distinct from apoptosis. Infect. Immun. 65:4075. (10.1128/iai.65.10.4075-4081.1997)
  18. Stockinger, S., T. Materna, D. Stoiber, L. Bayr, R. Steinborn, T. Kolbe, H. Unger, T. Chakraborty, D. E. Levy, M. Muller, T. Decker. 2002. Production of type I IFN sensitizes macrophages to cell death induced by Listeria monocytogenes. J. Immunol. 169:6522. (10.4049/jimmunol.169.11.6522)
  19. O’Riordan, M., C. H. Yi, R. Gonzales, K. D. Lee, D. A. Portnoy. 2002. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl. Acad. Sci. USA 99:13861. (10.1073/pnas.202476699)
  20. Guzman, C. A., E. Domann, M. Rohde, D. Bruder, A. Darji, S. Weiss, J. Wehland, T. Chakraborty, K. N. Timmis. 1996. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Mol. Microbiol. 20:119. (10.1111/j.1365-2958.1996.tb02494.x)
  21. Nomura, T., I. Kawamura, K. Tsuchiya, C. Kohda, H. Baba, Y. Ito, T. Kimoto, I. Watanabe, M. Mitsuyama. 2002. Essential role of interleukin-12 (IL-12) and IL-18 for γ interferon production induced by listeriolysin O in mouse spleen cells. Infect. Immun. 70:1049. (10.1128/IAI.70.3.1049-1055.2002)
  22. Kohda, C., I. Kawamura, H. Baba, T. Nomura, Y. Ito, T. Kimoto, I. Watanabe, M. Mitsuyama. 2002. Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect. Immun. 70:1334. (10.1128/IAI.70.3.1334-1341.2002)
  23. Sibelius, U., F. Rose, T. Chakraborty, A. Darji, J. Wehland, S. Weiss, W. Seeger, F. Grimminger. 1996. Listeriolysin is a potent inducer of the phosphatidylinositol response and lipid mediator generation in human endothelial cells. Infect. Immun. 64:674. (10.1128/iai.64.2.674-676.1996)
  24. Carrero, J. A., B. Calderon, E. R. Unanue. 2004. Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J. Immunol. 172:4866. (10.4049/jimmunol.172.8.4866)
  25. Flo, T. H., O. Halaas, E. Lien, L. Ryan, G. Teti, D. T. Golenbock, A. Sundan, T. Espevik. 2000. Human Toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J. Immunol. 164:2064. (10.4049/jimmunol.164.4.2064)
  26. Edelson, B. T., E. R. Unanue. 2002. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria: no role for either in macrophage listericidal activity. J. Immunol. 169:3869. (10.4049/jimmunol.169.7.3869)
  27. Hayashi, F., K. D. Smith, A. Ozinsky, T. R. Hawn, E. C. Yi, D. R. Goodlett, J. K. Eng, S. Akira, D. M. Underhill, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099. (10.1038/35074106)
  28. Torres, D., M. Barrier, F. Bihl, V. J. Quesniaux, I. Maillet, S. Akira, B. Ryffel, F. Erard. 2004. Toll-like receptor 2 is required for optimal control of Listeria monocytogenes infection. Infect. Immun. 72:2131. (10.1128/IAI.72.4.2131-2139.2004)
  29. Kovarik, P., D. Stoiber, M. Novy, T. Decker. 1998. Stat1 combines signals derived from IFN-γ and LPS receptors during macrophage activation. EMBO J. 17:3660. (10.1093/emboj/17.13.3660)
  30. Erlandsson, L., R. Blumenthal, M. L. Eloranta, H. Engel, G. Alm, S. Weiss, T. Leanderson. 1998. Interferon-β is required for interferon-α production in mouse fibroblasts. Curr. Biol. 8:223. (10.1016/S0960-9822(98)70086-7)
  31. Durbin, J. E., R. Hackenmiller, M. C. Simon, D. E. Levy. 1996. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443. (10.1016/S0092-8674(00)81289-1)
  32. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11:443. (10.1016/S1074-7613(00)80119-3)
  33. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740. (10.1038/35047123)
  34. Kawai, T., O. Adachi, T. Ogawa, K. Takeda, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115. (10.1016/S1074-7613(00)80086-2)
  35. Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640. (10.1126/science.1087262)
  36. Yamamoto, M., S. Sato, H. Hemmi, S. Uematsu, K. Hoshino, T. Kaisho, O. Takeuchi, K. Takeda, S. Akira. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4:1144. (10.1038/ni986)
  37. Pauleau, A. L., P. J. Murray. 2003. Role of nod2 in the response of macrophages to Toll-like receptor agonists. Mol. Cell. Biol. 23:7531. (10.1128/MCB.23.21.7531-7539.2003)
  38. Baccarini, M., F. Bistoni, M. L. Lohmann Matthes. 1985. In vitro natural cell-mediated cytotoxicity against Candida albicans: macrophage precursors as effector cells. J. Immunol. 134:2658. (10.4049/jimmunol.134.4.2658)
  39. Kocks, C., E. Gouin, M. Tabouret, P. Berche, H. Ohayon, P. Cossart. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521. (10.1016/0092-8674(92)90188-I)
  40. Kovarik, P., M. Mangold, K. Ramsauer, H. Heidari, R. Steinborn, A. Zotter, D. E. Levy, M. Muller, T. Decker. 2001. Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J. 20:91. (10.1093/emboj/20.1.91)
  41. Heid, C. A., J. Stevens, K. J. Livak, P. M. Williams. 1996. Real time quantitative PCR. Genome Res. 6:986. (10.1101/gr.6.10.986)
  42. Sakaguchi, S., H. Negishi, M. Asagiri, C. Nakajima, T. Mizutani, A. Takaoka, K. Honda, T. Taniguchi. 2003. Essential role of IRF-3 in lipopolysaccharide-induced interferon-β gene expression and endotoxin shock. Biochem. Biophys. Res. Commun. 306:860. (10.1016/S0006-291X(03)01049-0)
  43. Varinou, L., K. Ramsauer, M. Karaghiosoff, T. Kolbe, K. Pfeffer, M. Muller, T. Decker. 2003. Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-γ-dependent innate immunity. Immunity 19:793. (10.1016/S1074-7613(03)00322-4)
  44. Kovarik, P., D. Stoiber, P. A. Eyers, R. Menghini, A. Neininger, M. Gaestel, P. Cohen, T. Decker. 1999. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway. Proc. Natl. Acad. Sci. USA 96:13956. (10.1073/pnas.96.24.13956)
  45. Stoiber, D., S. Stockinger, P. Steinlein, J. Kovarik, T. Decker. 2001. Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3. J. Immunol. 166:466. (10.4049/jimmunol.166.1.466)
  46. Takeda, K., T. Kaisho, S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335. (10.1146/annurev.immunol.21.120601.141126)
  47. Mizel, S. B., A. N. Honko, M. A. Moors, P. S. Smith, A. P. West. 2003. Induction of macrophage nitric oxide production by Gram-negative flagellin involves signaling via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J. Immunol. 170:6217. (10.4049/jimmunol.170.12.6217)
  48. O’Neill, L. A., K. A. Fitzgerald, A. G. Bowie. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24:286. (10.1016/S1471-4906(03)00115-7)
  49. Yamamoto, M., K. Takeda, S. Akira. 2004. TIR domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40:861. (10.1016/j.molimm.2003.10.006)
  50. Hoshino, K., T. Kaisho, T. Iwabe, O. Takeuchi, S. Akira. 2002. Differential involvement of IFN-β in Toll-like receptor-stimulated dendritic cell activation. Int. Immunol. 14:1225. (10.1093/intimm/dxf089)
  51. Tabeta, K., P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, L. Shamel, S. Sovath, J. Goode, et al 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101:3516. (10.1073/pnas.0400525101)
  52. Kawai, T., S. Sato, K. J. Ishii, C. Coban, H. Hemmi, M. Yamamoto, K. Terai, M. Matsuda, J. I. Inoue, S. Uematsu, et al 2004. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. : (10.1038/ni1118)
  53. Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171:4304. (10.4049/jimmunol.171.8.4304)
  54. Hoebe, K., X. Du, P. Georgel, E. Janssen, K. Tabeta, S. O. Kim, J. Goode, P. Lin, N. Mann, S. Mudd, et al 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743. (10.1038/nature01889)
  55. Fitzgerald, K. A., D. C. Rowe, B. J. Barnes, D. R. Caffrey, A. Visintin, E. Latz, B. Monks, P. M. Pitha, D. T. Golenbock. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198:1043. (10.1084/jem.20031023)
  56. Weighardt, H., G. Jusek, J. Mages, R. Lang, K. Hoebe, B. Beutler, B. Holzmann. 2004. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur. J. Immunol. 34:558. (10.1002/eji.200324714)
  57. Inohara, N., G. Nunez. 2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371. (10.1038/nri1086)
  58. Chamaillard, M., M. Hashimoto, Y. Horie, J. Masumoto, S. Qiu, L. Saab, Y. Ogura, A. Kawasaki, K. Fukase, S. Kusumoto, et al 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702. (10.1038/ni945)
  59. Girardin, S. E., I. G. Boneca, L. A. Carneiro, A. Antignac, M. Jehanno, J. Viala, K. Tedin, M. K. Taha, A. Labigne, U. Zathringer, et al 2003. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300:1584. (10.1126/science.1084677)
  60. Inohara, N., Y. Ogura, A. Fontalba, O. Gutierrez, F. Pons, J. Crespo, K. Fukase, S. Inamura, S. Kusumoto, M. Hashimoto, et al 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J. Biol. Chem. 278:5509. (10.1074/jbc.C200673200)
  61. Toshchakov, V., B. W. Jones, P. Y. Perera, K. Thomas, M. J. Cody, S. Zhang, B. R. Williams, J. Major, T. A. Hamilton, M. J. Fenton, S. N. Vogel. 2002. TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3:392. (10.1038/ni774)
  62. Doyle, S., S. Vaidya, R. O’Connell, H. Dadgostar, P. Dempsey, T. Wu, G. Rao, R. Sun, M. Haberland, R. Modlin, G. Cheng. 2002. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251. (10.1016/S1074-7613(02)00390-4)
  63. Peters, K. L., H. L. Smith, G. R. Stark, G. C. Sen. 2002. IRF-3-dependent, NFκB- and JNK-independent activation of the 561 and IFN-β genes in response to double-stranded RNA. Proc. Natl. Acad. Sci. USA 99:6322. (10.1073/pnas.092133199)
  64. Grandvaux, N., M. J. Servant, B. tenOever, G. C. Sen, S. Balachandran, G. N. Barber, R. Lin, J. Hiscott. 2002. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76:5532. (10.1128/JVI.76.11.5532-5539.2002)
  65. Fehr, T., G. Schoedon, B. Odermatt, T. Holtschke, M. Schneemann, M. F. Bachmann, T. W. Mak, I. Horak, R. M. Zinkernagel. 1997. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J. Exp. Med. 185:921. (10.1084/jem.185.5.921)
  66. O’Connell, R. M., S. K. Saha, S. A. Vaidya, K. W. Bruhn, G. A. Miranda, B. Zarnegar, A. K. Perry, B. O. Nguyen, T. F. Lane, T. Taniguchi, et al 2004. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200:437. (10.1084/jem.20040712)
  67. Auerbuch, V., D. G. Brockstedt, N. Meyer-Morse, M. O’Riordan, D. A. Portnoy. 2004. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J. Exp. Med. 200:527. (10.1084/jem.20040976)
  68. Carrero, J. A., B. Calderon, E. R. Unanue. 2004. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med. 200:535. (10.1084/jem.20040769)
  69. Haase, R., C. J. Kirschning, A. Sing, P. Schrottner, K. Fukase, S. Kusumoto, H. Wagner, J. Heesemann, K. Ruckdeschel. 2003. A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J. Immunol. 171:4294. (10.4049/jimmunol.171.8.4294)
  70. Hsu, L. C., J. M. Park, K. Zhang, J. L. Luo, S. Maeda, R. J. Kaufman, L. Eckmann, D. G. Guiney, M. Karin. 2004. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428:341. (10.1038/nature02405)
  71. Serbina, N. V., W. Kuziel, R. Flavell, S. Akira, B. Rollins, E. G. Pamer. 2003. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19:891. (10.1016/S1074-7613(03)00330-3)
  72. Opitz, B., A. Puschel, B. Schmeck, A. C. Hocke, S. Rosseau, S. Hammerschmidt, R. R. Schumann, N. Suttorp, S. Hippenstiel. 2004. Nod proteins are innate immune receptors for internalized Streptococcus pneumoniae. J. Biol. Chem. 279:36426. (10.1074/jbc.M403861200)
  73. Lee, C. K., R. Gimeno, D. E. Levy. 1999. Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J. Exp. Med. 190:1451. (10.1084/jem.190.10.1451)
  74. Hata, N., M. Sato, A. Takaoka, M. Asagiri, N. Tanaka, T. Taniguchi. 2001. Constitutive IFN-α/β signal for efficient IFN-α/β gene induction by virus. Biochem. Biophys. Res. Commun. 285:518. (10.1006/bbrc.2001.5159)
  75. Taniguchi, T., A. Takaoka. 2001. A weak signal for strong responses: interferon-α/β revisited. Nat. Rev. Mol. Cell Biol. 2:378. (10.1038/35073080)
  76. Shi, S., C. Nathan, D. Schnappinger, J. Drenkow, M. Fuortes, E. Block, A. Ding, T. R. Gingeras, G. Schoolnik, S. Akira, et al 2003. MyD88 primes macrophages for full-scale activation by interferon-γ yet mediates few responses to Mycobacterium tuberculosis. J. Exp. Med. 198:987. (10.1084/jem.20030603)
Dates
Type When
Created 11 years, 4 months ago (April 20, 2014, 6:18 p.m.)
Deposited 8 months ago (Jan. 2, 2025, 12:18 p.m.)
Indexed 4 months, 2 weeks ago (April 19, 2025, 12:27 a.m.)
Issued 20 years, 8 months ago (Dec. 15, 2004)
Published 20 years, 8 months ago (Dec. 15, 2004)
Published Print 20 years, 8 months ago (Dec. 15, 2004)
Funders 0

None

@article{Stockinger_2004, title={IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism}, volume={173}, ISSN={1550-6606}, url={http://dx.doi.org/10.4049/jimmunol.173.12.7416}, DOI={10.4049/jimmunol.173.12.7416}, number={12}, journal={The Journal of Immunology}, publisher={Oxford University Press (OUP)}, author={Stockinger, Silvia and Reutterer, Benjamin and Schaljo, Barbara and Schellack, Carola and Brunner, Sylvia and Materna, Tilo and Yamamoto, Masahiro and Akira, Shizuo and Taniguchi, Tadatsugu and Murray, Peter J. and Müller, Mathias and Decker, Thomas}, year={2004}, month=dec, pages={7416–7425} }