Abstract
Abstract Pactolus is a cell surface protein expressed by murine neutrophils. Pactolus is similar to the β integrins, except it lacks a functional metal ion-dependent adhesion site domain and is expressed without an α-chain partner. The majority of the Pactolus protein is held within the cell in dense granules in a highly glycosylated form. This intracellular form of Pactolus can be released to the cell surface following inflammatory activation or ligation of Pactolus on the cell surface. In addition, intracellular Pactolus translocates to the neutrophil surface following induction of apoptosis. Neutrophil activation studies suggest that Pactolus does not serve as an activating or phagocytic receptor for the neutrophil. To further define the function of Pactolus, a Pactolus-null mouse was generated. Pactolus-deficient animals mature appropriately and possess normal numbers of neutrophils, display appropriate migration into sites of inflammation, and combat introduced infections efficiently. These data suggest that Pactolus does not function as a neutrophil phagocytic or adhesion receptor, but may instead serve as a sugar-bearing ligand for lectin recognition by other cells.
References
43
Referenced
7
-
Garrison, S., A. Hojgaard, D. Patillo, J. J. Weis, J. H. Weis. 2001. Functional characterization of pactolus, a β-integrin-like protein preferentially expressed by neutrophils. J. Biol. Chem. 276:35500.
(
10.1074/jbc.M104369200
) -
Chen, Y., S. Garrison, J. J. Weis, J. H. Weis. 1998. Identification of pactolus, an integrin β subunit-like cell-surface protein preferentially expressed by cells of the bone marrow. J. Biol. Chem. 273:8711.
(
10.1074/jbc.273.15.8711
) -
Bajt, M. L., J. C. Loftus. 1994. Mutation of a ligand binding domain of β3 integrin: integral role of oxygenated residues in αIIbβ3 (GPIIb-IIIa) receptor function. J. Biol. Chem. 269:20913.
(
10.1016/S0021-9258(17)31908-7
) -
Wardlaw, A. J., M. L. Hibbs, S. A. Stacker, T. A. Springer. 1990. Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates. J. Exp. Med. 172:335.
(
10.1084/jem.172.1.335
) -
Michishita, M., V. Videm, M. A. Arnaout. 1993. A novel divalent cation-binding site in the A domain of the beta 2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72:857.
(
10.1016/0092-8674(93)90575-B
) -
Ueda, T., P. Rieu, J. Brayer, M. A. Arnaout. 1994. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA 91:10680.
(
10.1073/pnas.91.22.10680
) -
Rieu, P., T. Ueda, I. Haruta, C. P. Sharma, M. A. Arnaout. 1994. The A-domain of β2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell Biol. 127:2081.
(
10.1083/jcb.127.6.2081
) -
Williams, N. S., T. A. Moore, J. D. Schatzle, I. J. Puzanov, P. V. Sivakumar, A. Zlotnik, M. Bennett, V. Kumar. 1997. Generation of lytic natural killer 1.1+, Ly-49− cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med. 186:1609.
(
10.1084/jem.186.9.1609
) -
Miller, L. J., D. F. Bainton, N. Borregaard, T. A. Springer. 1987. Stimulated mobilization of monocyte Mac-1 and p150, 95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J. Clin. Invest. 80:535.
(
10.1172/JCI113102
) -
Graves, V., T. Gabig, L. McCarthy, E. F. Strour, T. Leemhuis, D. English. 1992. Simultaneous mobilization of Mac-1 (CD11b/CD18) and formyl peptide chemoattractant receptors in human neutrophils. Blood 80:776.
(
10.1182/blood.V80.3.776.bloodjournal803776
) - Wagner, J. G., R. A. Roth. 2000. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol. Rev. 52:349.
-
Tedder, T. F., D. A. Steeber, A. Chen, P. Engel. 1995. The selectins: vascular adhesion molecules. FASEB J. 9:866.
(
10.1096/fasebj.9.10.7542213
) -
Loftus, J. C., R. C. Liddington. 1997. Cell adhesion in vascular biology. New insights into integrin-ligand interaction. J. Clin. Invest. 99:2302.
(
10.1172/JCI119408
) -
Underhill, D. M., A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20:825.
(
10.1146/annurev.immunol.20.103001.114744
) -
Cox, G., J. Crossley, Z. Xing. 1995. Macrophage engulfment of apoptotic neutrophils contributes to the resolution of acute pulmonary inflammation in vivo. Am. J. Respir. Cell Mol. Biol. 12:232.
(
10.1165/ajrcmb.12.2.7865221
) -
Fadok, V. A., J. S. Savill, C. Haslett, D. L. Bratton, D. E. Doherty, P. A. Campbell, P. M. Henson. 1992. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149:4029.
(
10.4049/jimmunol.149.12.4029
) -
Fadok, V. A., D. J. Laszlo, P. W. Noble, L. Weinstein, D. W. Riches, P. M. Henson. 1993. Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J. Immunol. 151:4274.
(
10.4049/jimmunol.151.8.4274
) -
Ramprasad, M. P., V. Terpstra, N. Kondratenko, O. Quehenberger, D. Steinberg. 1996. Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 93:14833.
(
10.1073/pnas.93.25.14833
) -
Fadok, V. A., D. L. Bratton, S. C. Frasch, M. L. Warner, P. M. Henson. 1998. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5:551.
(
10.1038/sj.cdd.4400404
) -
Cowland, J. B., N. Borregaard. 1999. Isolation of neutrophil precursors from bone marrow for biochemical and transcriptional analysis. J. Immunol. Methods. 232:191.
(
10.1016/S0022-1759(99)00176-3
) -
Baron, E. J., R. A. Proctor. 1982. Elicitation of peritoneal polymorphonuclear neutrophils from mice. J. Immunol. Methods 49:305.
(
10.1016/0022-1759(82)90130-2
) -
Kjeldsen, L., H. Sengelov, N. Borregaard. 1999. Subcellular fractionation of human neutrophils on Percoll density gradients. J. Immunol. Methods 232:131.
(
10.1016/S0022-1759(99)00171-4
) -
Margraf, R. L., Y. Chen, S. Garrison, J. J. Weis, J. H. Weis. 1999. Genomic organization, chromosomal localization, and transcriptional variants of the murine pactolus gene. Mamm Genome. 10:1075.
(
10.1007/s003359901164
) -
Chirgwin, J. M., A. E. Przybyla, R. J. MacDonald, W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294.
(
10.1021/bi00591a005
) -
Tan, S. S., J. H. Weis. 1992. Development of a sensitive reverse transcriptase PCR assay, RT-RPCR, utilizing rapid cycle times. Genome Res. 2:137.
(
10.1101/gr.2.2.137
) -
Gillitzer, R., M. Goebeler. 2001. Chemokines in cutaneous wound healing. J. Leukocyte Biol. 69:513.
(
10.1189/jlb.69.4.513
) -
Kolaczkowska, E., S. Shahzidi, R. Seljelid, N. van Rooijen, B. Plytycz. 2002. Early vascular permeability in murine experimental peritonitis is co-mediated by resident peritoneal macrophages and mast cells: crucial involvement of macrophage-derived cysteinyl-leukotrienes. Inflammation 26:61.
(
10.1023/A:1014837110735
) -
Busse, W. W.. 1998. Leukotrienes and inflammation. Am. J. Respir. Crit. Care Med. 157:S210.
(
10.1164/ajrccm.157.6.mar-1
) -
Berger, M., S. Budhu, E. Lu, Y. Li, D. Loike, S. C. Silverstein, J. D. Loike. 2002. Different Gi-coupled chemoattractant receptors signal qualitatively different functions in human neutrophils. J. Leukocyte Biol. 71:798.
(
10.1189/jlb.71.5.798
) -
Aggarwal, B. B., R. Pandita. 1994. Both type I and type II interferons down-regulate human tumor necrosis factor receptors in human hepatocellular carcinoma cell line Hep G2: role of protein kinase C. FEBS Lett. 337:99.
(
10.1016/0014-5793(94)80637-3
) -
Feuillard, J., H. Gouy, G. Bismuth, L. M. Lee, P. Debre, M. Korner. 1991. NF-κB activation by tumor necrosis factor α in the Jurkat T cell line is independent of protein kinase A, protein kinase C, and Ca2+-regulated kinases. Cytokine 3:257.
(
10.1016/1043-4666(91)90025-9
) -
Braun, J. S., R. Novak, P. J. Murray, C. M. Eischen, S. A. Susin, G. Kroemer, A. Halle, J. R. Weber, E. I. Tuomanen, J. L. Cleveland. 2001. Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J. Infect. Dis. 184:1300.
(
10.1086/324013
) -
Mizgerd, J. P., H. Kubo, G. J. Kutkoski, S. D. Bhagwan, K. Scharffetter-Kochanek, A. L. Beaudet, C. M. Doerschuk. 1997. Neutrophil emigration in the skin, lungs, and peritoneum: different requirements for CD11/CD18 revealed by CD18-deficient mice. J. Exp. Med. 186:1357.
(
10.1084/jem.186.8.1357
) -
Walzog, B., K. Scharffetter-Kochanek, P. Gaehtgens. 1999. Impairment of neutrophil emigration in CD18-null mice. Am. J. Physiol. 276:G1125.
(
10.1152/ajpgi.1999.276.5.G1125
) -
Goebeler, M., J. Gutwald, J. Roth, G. Meinardus-Hager, C. Sorg. 1990. Expression of intercellular adhesion molecule-1 in murine allergic contact dermatitis. Int. Arch. Allergy Appl. Immunol. 93:294.
(
10.1159/000235257
) -
Berger, M., J. O’Shea, A. S. Cross, T. M. Folks, T. M. Chused, E. J. Brown, M. M. Frank. 1984. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J. Clin. Invest. 74:1566.
(
10.1172/JCI111572
) -
Sengelov, H., L. Kjeldsen, M. S. Diamond, T. A. Springer, N. Borregaard. 1993. Subcellular localization and dynamics of Mac-1 (αmβ2) in human neutrophils. J. Clin. Invest. 92:1467.
(
10.1172/JCI116724
) -
Wright, S. D., F. M. Griffin, Jr. 1985. Activation of phagocytic cells’ C3 receptors for phagocytosis. J. Leukocyte Biol. 38:327.
(
10.1002/jlb.38.2.327
) -
Haslett, C.. 1999. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respir. Crit. Care Med. 160:S5.
(
10.1164/ajrccm.160.supplement_1.4
) -
Sambrano, G. R., D. Steinberg. 1995. Recognition of oxidatively damaged and apoptotic cells by an oxidized low density lipoprotein receptor on mouse peritoneal macrophages: role of membrane phosphatidylserine. Proc. Natl. Acad. Sci. USA 92:1396.
(
10.1073/pnas.92.5.1396
) - Duvall, E., A. H. Wyllie, R. G. Morris. 1985. Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351.
-
Brown, S., I. Heinisch, E. Ross, K. Shaw, C. D. Buckley, J. Savill. 2002. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200.
(
10.1038/nature00811
) -
Savill, J., V. Fadok. 2000. Corpse clearance defines the meaning of cell death. Nature 407:784.
(
10.1038/35037722
)
Dates
Type | When |
---|---|
Created | 11 years, 4 months ago (April 20, 2014, 9:30 p.m.) |
Deposited | 8 months ago (Jan. 2, 2025, 1:38 p.m.) |
Indexed | 8 months ago (Jan. 3, 2025, 12:35 a.m.) |
Issued | 21 years, 8 months ago (Dec. 15, 2003) |
Published | 21 years, 8 months ago (Dec. 15, 2003) |
Published Print | 21 years, 8 months ago (Dec. 15, 2003) |
@article{Garrison_2003, title={Surface Translocation of Pactolus Is Induced by Cell Activation and Death, but Is Not Required for Neutrophil Migration and Function}, volume={171}, ISSN={1550-6606}, url={http://dx.doi.org/10.4049/jimmunol.171.12.6795}, DOI={10.4049/jimmunol.171.12.6795}, number={12}, journal={The Journal of Immunology}, publisher={Oxford University Press (OUP)}, author={Garrison, Sean and Hojgaard, Andrias and Margraf, Rebecca and Weis, Janis J. and Weis, John H.}, year={2003}, month=dec, pages={6795–6806} }