Crossref journal-article
Oxford University Press (OUP)
The Journal of Immunology (286)
Abstract

AbstractBacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.

Bibliography

Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Mühlradt, P. F., Sato, S., Hoshino, K., & Akira, S. (2001). Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. The Journal of Immunology, 167(10), 5887–5894.

Authors 8
  1. Taro Kawai (first)
  2. Osamu Takeuchi (additional)
  3. Takashi Fujita (additional)
  4. Jun-ichiro Inoue (additional)
  5. Peter F. Mühlradt (additional)
  6. Shintaro Sato (additional)
  7. Katsuaki Hoshino (additional)
  8. Shizuo Akira (additional)
References 52 Referenced 854
  1. Medzhitov, R., C. A. Janeway, Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295 (10.1016/S0092-8674(00)80412-2)
  2. Janeway, C. A., Jr, R. Medzhitov. 1999. Lipoproteins take their Toll on the host. Curr. Biol. 9: R879 (10.1016/S0960-9822(00)80073-1)
  3. Hoffmann, J. A., F. C. Kafatos, C. A. Janeway, Jr, R. A. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313 (10.1126/science.284.5418.1313)
  4. Medzhitov, R., P. Preston-Hurburt, C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394 (10.1038/41131)
  5. Rock, F. L., G. Hardiman, J. C. Timans, R. A. Kastelein, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95: 588 (10.1073/pnas.95.2.588)
  6. Takeuchi, O., T. Kawai, H. Sanjo, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, K. Takeda, S. Akira. 1999. TLR6: a novel member of an expanding Toll-like receptor family. Gene 231: 59 (10.1016/S0378-1119(99)00098-0)
  7. Chuang, T. H., R. J. Ulevitch. 2000. Cloning and characterization of a subfamily of human Toll-like receptors: hTLR7, hTLR8, and hTLR9. Eur. Cytokine Network 11: 372
  8. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408: 740 (10.1038/35047123)
  9. Ulevitch, R. J., P. S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13: 437 (10.1146/annurev.iy.13.040195.002253)
  10. Poltorak, A., X. He, I. Smirnova, M.-Y. Liu, C. V. Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, et al 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085 (10.1126/science.282.5396.2085)
  11. Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, S. Akira. 1999. TLR4-deficient mice are hyporesponsive to LPS: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749 (10.4049/jimmunol.162.7.3749)
  12. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443 (10.1016/S1074-7613(00)80119-3)
  13. Takeuchi, O., A. Kaufmann, K. Grote, T. Kawai, K. Hoshino, M. Morr, P. F. Muhlradt, S. Akira. 2000. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164: 554 (10.4049/jimmunol.164.2.554)
  14. Bowie, A., L. A. O’Neill. 2000. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for proinflammatory interleukins and microbial products. J. Leukocyte Biol. 67: 508 (10.1002/jlb.67.4.508)
  15. Muzio, M., J. Ni, P. Feng, V. M. Dixit. 1997. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612 (10.1126/science.278.5343.1612)
  16. Wesche, H., W. J. Henzel, W. Shillinglaw, S. Li, Z. Cao. 1997. MyD88: an adaptor protein that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837 (10.1016/S1074-7613(00)80402-1)
  17. Medzhitov, R., P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, C. A. Janeway, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell. 2: 253 (10.1016/S1097-2765(00)80136-7)
  18. Cao, Z., W. J. Henzel, X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128 (10.1126/science.271.5252.1128)
  19. Cao, Z., J. Xiong, M. Takeuchi, T. Kurama, D. V. Goeddel. 1996. TRAF6 is a signal transducer for interleukin-1. Nature 383: 443 (10.1038/383443a0)
  20. Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, S. Akira. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9: 143 (10.1016/S1074-7613(00)80596-8)
  21. Kawai, T., O. Adachi, T. Ogawa, K. Takeda, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115 (10.1016/S1074-7613(00)80086-2)
  22. Yoneyama, M., W. Suhara, Y. Fukuhara, M. Fukuda, E. Nishida, T. Fujita. 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17: 1087 (10.1093/emboj/17.4.1087)
  23. Shimada, T., M. Matsumoto, Y. Tatsumi, A. Kanamaru, S. Akira. 1998. A novel lipopolysaccharide inducible C-C chemokine receptor related gene in murine macrophages. FEBS Lett. 425: 490 (10.1016/S0014-5793(98)00299-3)
  24. Reich, N., B. Evans, D. Levy, D. Fahey, E. Knight, Jr, J. E. Darnell, Jr. 1987. IFN-induced transcription of a gene encoding a 15-kDa protein depends on an upstream enhancer element. Proc. Natl. Acad. Sci. USA 84: 6394 (10.1073/pnas.84.18.6394)
  25. Ohmori, Y., T. A. Hamilton. 1993. Cooperative interaction between interferon (IFN) stimulus response element and κB sequence motifs controls IFN-γ- and lipopolysaccharide-stimulated transcription from the murine IP-10 promoter. J. Biol. Chem. 268: 6677 (10.1016/S0021-9258(18)53303-2)
  26. Lee, C.G., N. A. Jenkins, D. J. Gilbert, N. G. Copeland, W. E. O’Brien. 1995. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics 41: 263 (10.1007/BF00172150)
  27. Smith, J. B., H. R. Herschman. 1996. The glucocorticoid-attenuated response genes GARG-16, GARG-39, and GARG-49/IRG2 encode inducible proteins containing multiple tetratricopeptide repeat domains. Arch. Biochem. Biophys. 330: 290 (10.1006/abbi.1996.0256)
  28. Wathelet, M. G., I. M. Clauss, C. B. Nols, J. Content, G. A. Huez. 1987. New inducers revealed by the promoter sequence analysis of two interferon-activated human genes. Eur. J. Biochem. 169: 313 (10.1111/j.1432-1033.1987.tb13614.x)
  29. Wathelet, M. G., I. M. Clauss, J. Content, G. A. Huez. 1988. Regulation of two interferon-inducible human genes by interferon, poly(rI), poly(rC), and viruses. Eur. J. Biochem. 174: 323 (10.1111/j.1432-1033.1988.tb14101.x)
  30. Kopidlowski, K. M., C. A. Salkowski, M. Joshua Cody, N. van Rooijen, J. Major, T. A. Hamilton, S. N. Vogel. 1999. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 163: 1537 (10.4049/jimmunol.163.3.1537)
  31. Ding, A. H., F. Porteu, E. Sanchez, C. F. Nathan. 1990. Shared actions of endotoxin and Taxol on TNF receptors and TNF release. Science 248: 370 (10.1126/science.1970196)
  32. Manthey, C. L., M. E. Brandes, P. Y. Perera, S. N. Vogel. 1992. Taxol increases steady state levels of lipopolysaccharide-inducible genes and protein-tyrosine phosphorylation in murine macrophages. J. Immunol. 149: 2459 (10.4049/jimmunol.149.7.2459)
  33. Kawasaki, K., S. Akashi, R. Shimazu, T. Yoshida, K. Miyake, M. Nishijima. 2000. Mouse toll-like receptor 4: MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem. 275: 2251 (10.1074/jbc.275.4.2251)
  34. Cheng, G., A. S. Nazar, H. S. Shin, P. Vanguri, M. L. Shin. 1998. IP-10 gene transcription by virus in astrocytes requires cooperation of ISRE with adjacent κB site but not IRF-1 or viral transcription. J. Interferon Cytokine Res. 18: 987 (10.1089/jir.1998.18.987)
  35. Lin, R., C. Heylbroeck, P. Genin, P. M. Pitha, J. Hiscott. 1999. Essential role of interferon regulatory factor-3 in direct activation of RANTES chemokine transcription. Mol. Cell. Biol. 19: 959 (10.1128/MCB.19.2.959)
  36. Kim, T., T. Y. Kim, Y. H. Song, I. M. Min, J. Yim, T. K. Kim. 1999. Activation of interferon regulatory factor-3 in response to DNA-damaging agents. J. Biol. Chem. 274: 30686 (10.1074/jbc.274.43.30686)
  37. Lin, R., C. Heylbroeck, P. M. Pitha, J. Hiscott. 1998. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18: 2986 (10.1128/MCB.18.5.2986)
  38. Au, W. C., P. A. Moore, W. Lowther, Y. T. Juang, P. M. Pitha. 1995. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl. Acad. Sci. USA 92: 11657 (10.1073/pnas.92.25.11657)
  39. Navarro, L., K. Mowen, S. Rodems, B. Weaver, N. Reich, D. Spector, M. David. 1998. Cytomegalovirus activates interferon immediate early response gene expression and an interferon regulatory factor-3 containing interferon-stimulated response element-binding complex. Mol. Cell. Biol. 18: 3796 (10.1128/MCB.18.7.3796)
  40. Navarro, L., M. David. 1999. p38-dependent activation of interferon regulatory factor-3 by lipopolysaccharide. J. Biol. Chem. 274: 35535 (10.1074/jbc.274.50.35535)
  41. Nakaya, T., M. Sato, N. Hata, M. Asagiri, H. Suemori, S. Noguchi, N. Tanaka, T. Taniguchi. 2001. Gene induction pathways mediated by distinct IRFs during viral infection. Biochim. Biophys. Acta. 283: 1150 (10.1006/bbrc.2001.4913)
  42. Hirschfeld, M., J. J. Weis, V. Toshchakov, C. A. Salkowski, M. J. Cody, D. C. Ward, N. Qureshi, S. M. Michalek, S. N. Vogel. 2001. Signaling by Toll-like receptors 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69: 1477 (10.1128/IAI.69.3.1477-1482.2001)
  43. Perera, P. Y., T. N. Mayadas, O. Takeuchi, S. Akira, M. Zaks-Zilberman, S. M. Goyert, S. N. Vogel. 2001. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J. Immunol. 166: 574 (10.4049/jimmunol.166.1.574)
  44. Lomaga, M. A., W. C. Yeh, I. Sarosi, G. S. Duncan, C. Furlonger, A. Ho, S. Morony, C. Capparelli, G. Van, S. Kaufman, et al 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13: 1015 (10.1101/gad.13.8.1015)
  45. Naito, A., S. Azuma, S. Tanaka, T. Miyazaki, S. Takaki, K. Takatsu, K. Nakao, K. Nakamura, M. Katsuki, T. Yamamoto, J. Inoue. 1999. Severe osteopetrosis, defective interleukin-1 signalling, and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4: 353 (10.1046/j.1365-2443.1999.00265.x)
  46. Valledor, A. F., J. Xaus, M. Comalada, C. Soler, A. Celada. 2000. Protein kinase Cε is required for the induction of mitogen-activated protein kinase phosphatase-1 in lipopolysaccharide-stimulated macrophages. J. Immunol. 164: 29 (10.4049/jimmunol.164.1.29)
  47. Hippenstiel, S., S. Soeth, B. Kellas, O. Fuhrmann, J. Seybold, M. Krull, C. Eichel-Streiber, M. Goebeler, S. Ludwig, N. Suttorp. 2000. Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 95: 3044 (10.1182/blood.V95.10.3044)
  48. Herrera-Velit, P., N. E. Reiner. 1996. Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol 3-kinase in human monocytes. J. Immunol. 156: 1157 (10.4049/jimmunol.156.3.1157)
  49. Salh, B., R. Wagey, A. Marotta, J. S. Tao, S. Pelech. 1998. Activation of phosphatidylinositol 3-kinase, protein kinase B, and p70 S6 kinases in lipopolysaccharide-stimulated Raw 264.7 cells: differential effects of rapamycin, Ly294002, and wortmannin on nitric oxide production. J. Immunol. 161: 6947 (10.4049/jimmunol.161.12.6947)
  50. Ninomiya-Tsuji, J., K. Kishimoto, A. Hiyama, J. Inoue, Z. Cao, K. Matsumoto. 1999. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 398: 252 (10.1038/18465)
  51. Irie, T., T. Muta, K. Takeshige. 2000. TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factor-κB in lipopolysaccharide-stimulated macrophages. FEBS Lett. 467: 160 (10.1016/S0014-5793(00)01146-7)
  52. Uetani, K., S. D. Der, M. Zamanian-Daryoush, C. de La Motte, B. Y. Lieberman, B. R. Williams, S. C. Erzurum. 2000. Central role of double-stranded RNA-activated protein kinase in microbial induction of nitric oxide synthase. J. Immunol. 165: 988 (10.4049/jimmunol.165.2.988)
Dates
Type When
Created 11 years, 4 months ago (April 20, 2014, 10:55 p.m.)
Deposited 7 months, 4 weeks ago (Jan. 2, 2025, 11:52 a.m.)
Indexed 6 days, 5 hours ago (Aug. 24, 2025, 7:07 p.m.)
Issued 23 years, 9 months ago (Nov. 15, 2001)
Published 23 years, 9 months ago (Nov. 15, 2001)
Published Print 23 years, 9 months ago (Nov. 15, 2001)
Funders 0

None

@article{Kawai_2001, title={Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes}, volume={167}, ISSN={1550-6606}, url={http://dx.doi.org/10.4049/jimmunol.167.10.5887}, DOI={10.4049/jimmunol.167.10.5887}, number={10}, journal={The Journal of Immunology}, publisher={Oxford University Press (OUP)}, author={Kawai, Taro and Takeuchi, Osamu and Fujita, Takashi and Inoue, Jun-ichiro and Mühlradt, Peter F. and Sato, Shintaro and Hoshino, Katsuaki and Akira, Shizuo}, year={2001}, month=nov, pages={5887–5894} }