Crossref journal-article
Oxford University Press (OUP)
The Journal of Immunology (286)
Abstract

AbstractMembrane IgG H chains turn over considerably more rapidly than secretory Ig H chains in the 18-81 A2 pre-B cell line. This rapid degradation occurs in proteasomes. N-Glycosylated membrane Ig H chains accumulate in the endoplasmic reticulum in the presence of proteasomal inhibitors, suggesting that retrotranslocation and proteasomal degradation of membrane Ig H chains may be closely coupled processes. Accelerated proteasomal degradation of membrane Ig H chains was also observed in transfected nonlymphoid cells. At steady state, the membrane form of the H chain associates more readily with Bip and calnexin than its secretory counterpart. The preferential recognition of membrane, as opposed to secretory, Ig H chains by some endoplasmic reticulum chaperones, may provide an explanation for the accelerated proteasomal degradation of the former.

Bibliography

Ho, S. C., Chaudhuri, S., Bachhawat, A., McDonald, K., & Pillai, S. (2000). Accelerated Proteasomal Degradation of Membrane Ig Heavy Chains. The Journal of Immunology, 164(9), 4713–4719.

Authors 5
  1. Siew C. Ho (first)
  2. Subhra Chaudhuri (additional)
  3. Anand Bachhawat (additional)
  4. Kenneth McDonald (additional)
  5. Shiv Pillai (additional)
References 53 Referenced 11
  1. Wiertz, E. J. H. J., D. Tortorella, M. Bogyo, J. Yu, W. Mothes, T. R. Jones, T. A. Rapoport, H. L. Ploegh. 1996. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384: 432 (10.1038/384432a0)
  2. Kopito, R. R.. 1997. ER quality control: the cytoplasmic connection. Cell 88: 427 (10.1016/S0092-8674(00)81881-4)
  3. Brodsky, J. L., A. A. McCracken. 1997. ER associated and proteasome-mediated protein degradation: how two topologically restricted events came together. Trends Cell Biol. 7: 151 (10.1016/S0962-8924(97)01020-9)
  4. Hiller, M. H., A. Finger, M. Schweiger, D. H. Wolf. 1996. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273: 1725 (10.1126/science.273.5282.1725)
  5. Jensen, T. J., M. A. Loo, S. Pind, D. B. Williams, A. L. Goldberg, J. R. Riordan. 1995. Multiple proteolytic systems including the proteasome contribute to CFTR processing. Cell 83: 129 (10.1016/0092-8674(95)90241-4)
  6. Huppa, J. B., H. L. Ploegh. 1997. The α chain of the T cell antigen receptor is degraded in the cytosol. Immunity 7: 113 (10.1016/S1074-7613(00)80514-2)
  7. Hughes, E. A., C. Hammond, P. Cresswell. 1997. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl. Acad. Sci. USA 94: 1896 (10.1073/pnas.94.5.1896)
  8. Johnston, J. A., C. L. Ward, R. R. Kopito. 1998. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143: 1883 (10.1083/jcb.143.7.1883)
  9. Yu, H., G. Guang, S. Kobayashi, R. R. Kopito. 1997. Cytosolic degradation of T-cell receptor α chains by the proteasome. J. Biol. Chem. 272: 20800 (10.1074/jbc.272.33.20800)
  10. Haas, I. G., M. Wabl. 1983. Immunoglobulin heavy chain binding protein. Nature 306: 387 (10.1038/306387a0)
  11. Munro, S., H. R. Pelham. 1986. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291 (10.1016/0092-8674(86)90746-4)
  12. Gething, M. J., K. McCammon, J. Sambrook. 1986. Expression of wild type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46: 939 (10.1016/0092-8674(86)90076-0)
  13. Degen, E., D. B. Williams. 1991. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J. Cell Biol. 112: 1099 (10.1083/jcb.112.6.1099)
  14. Hochstenbach, F., V. David, S. Watkins, M. B. Brenner. 1992. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc. Natl. Acad. Sci. USA 89: 4734 (10.1073/pnas.89.10.4734)
  15. Galvin, K., S. Krishna, F. Ponchel, M. Frohlich, D. E. Cummings, R. Carlson, J. R. Wands, K. J. Isselbacher, S. Pillai, M. Ozturk. 1992. The major histocompatibility complex class I antigen-binding protein p88 is the product of the calnexin gene. Proc. Natl. Acad. Sci. USA 89: 8452 (10.1073/pnas.89.18.8452)
  16. Wada, I., D. Rindress, P. H. Cameron, W.-J. Ou, J. J. Doherty, II, D. Louvard, A. W. Bell, D. Dignard, D. Y. Thomas, J. J. M. Bergeron. 1991. SSRa and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266: 19599 (10.1016/S0021-9258(18)55036-5)
  17. Ou, W.-J., P. H. Cameron, D. Y. Thomas, J. J. M. Bergeron. 1993. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771 (10.1038/364771a0)
  18. Otteken, A., B. Moss. 1996. Calreticulin interacts with newly synthesized human immunodeficiency virus type I envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J. Biol. Chem. 271: 97 (10.1074/jbc.271.1.97)
  19. Nash, P. D., M. Opas, M. Michalak. 1994. Calreticulin: not just another calcium-binding protein. Mol. Cell. Biochem. 135: 71 (10.1007/BF00925962)
  20. Plemper, R. K., S. Bohmler, J. Bordallo, T. Sommer, D. H. Wolf. 1997. Mutant analysis links the translocon and Bip to retrograde protein transport for ER degradation. Nature 388: 891 (10.1038/42276)
  21. McCracken, A. A., J. L. Brodsky. 1996. Assembly of ER associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132: 291 (10.1083/jcb.132.3.291)
  22. Hendershot, L. M., D. Bole, G. Kohler, J. F. Kearney. 1987. Assembly and secretion of heavy chains that do not associate post-translationally with Ig heavy chain binding protein. J. Cell Biol. 104: 761 (10.1083/jcb.104.3.761)
  23. Blond-Elguindi, S., S. E. Cwirla, W. J. Dower, R. J. Lipshutz, S. R. Sprang, J. F. Sambrook, M. J. Gething. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of Bip. Cell 75: 717 (10.1016/0092-8674(93)90492-9)
  24. Flynn, G. C., J. Pohl, M. T. Flocco, J. E. Rothman. 1991. Peptide binding specificity of the molecular chaperone BiP. Nature 353: 726 (10.1038/353726a0)
  25. Lyman, S. K., R. Schekman. 1997. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by Bip. Cell 88: 85 (10.1016/S0092-8674(00)81861-9)
  26. Hebert, D. N., B. Foellmer, A. Helenius. 1995. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81: 425 (10.1016/0092-8674(95)90395-X)
  27. Parodi, A., D. Mendelzon, G. Lederkremer, J. Martin-Barrientos. 1984. Evidence that transient glucosylation of protein-linked Man9GlcNAc2, Man8GlcNAc2 and Man7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells. J. Cell Biol. 259: 6351 (10.1016/S0021-9258(20)82148-6)
  28. Helenius, A.. 1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol. Biol. Cell 5: 253 (10.1091/mbc.5.3.253)
  29. Zapun, A., S. M. Petrescu, P. M. Rudd, R. A. Dwek, D. Y. Thomas, J. J. M. Bergeron. 1997. Conformation independent binding of monoglucosylated ribonuclease B to calnexin. Cell 88: 29 (10.1016/S0092-8674(00)81855-3)
  30. Rodan, A. R., J. F. Simons, E. S. Trombetta, A. Helenius. 1996. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J. 24: 6921 (10.1002/j.1460-2075.1996.tb01084.x)
  31. Cannon, K. S., D. N. Hebert, A. Helenius. 1996. Glycan dependent and independent association of vesicular stomatitis virus G protein with calnexin. J. Biol. Chem. 271: 14280 (10.1074/jbc.271.24.14280)
  32. Grupp, S. A., R. N. Mitchell, K. L. Schreiber, D. J. McKean, A. K. Abbas. 1995. Molecular mechanisms that control expression of the B lymphocyte antigen receptor complex. J. Exp. Med. 181: 161 (10.1084/jem.181.1.161)
  33. Wu, Y., C. Pun, N. Hozumi. 1997. Roles of calnexin and Ig-Ab interactions with membrane Igs in the surface expression of the B cell antigen receptor of the IgM and IgD classes. J. Immunol. 158: 2762 (10.4049/jimmunol.158.6.2762)
  34. O’Hare, T., G. D. Wiens, E. A. Whitcomb, C. A. Enns, M. B. Rittenberg. 1999. Proteasome involvement in the degradation of unassembled Ig light chains. J. Immunol. 163: 11 (10.4049/jimmunol.163.1.11)
  35. Bachhawat, A., S. Pillai. 1991. Distinct intracellular fates of membrane and secretory immunoglobulin heavy chains in a pre-B cell line. J. Cell Biol. 115: 619 (10.1083/jcb.115.3.619)
  36. Morgenstern, J. P., H. Land. 1990. A series of mammalian expression vectors and characterization of their expression of a reporter gene in stably and transient transfected cells. Nucleic Acids Res. 18: 1068 (10.1093/nar/18.4.1068)
  37. Brewer, C. B., M. G. Roth. 1991. A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 114: 413 (10.1083/jcb.114.3.413)
  38. Lopata, M. A., D. W. Cleveland, B. Sollner-Webb. 1984. High level expression of a chloramphenicol acetyltransferase gene by DNA dextran mediated DNA transfection coupled with a dimethyl sulfoxide or glycerol shock treatment. Nucleic Acids Res. 12: 5707 (10.1093/nar/12.14.5707)
  39. Chen, C., H. Okayama. 1988. Calcium phosphate mediated gene transfer: a highly efficient system for stably transforming cells with plasmid DNA. BioTechniques 6: 632
  40. Bogyo, M., J. S. McMaster, M. Gaczynska, D. Tortorella, A. L. Goldberg, M. Ploegh. 1997. Covalent modification of the active site threonine of the proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl. Acad. Sci. USA 94: 6629 (10.1073/pnas.94.13.6629)
  41. Shamu, C. E., C. M. Story, T. A. Rapoport, H. L. Ploegh. 1999. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147: 45 (10.1083/jcb.147.1.45)
  42. Linnik, K. M., H. Herscovitz. 1998. Multiple molecular chaperones interact with apolipoprotein B during its maturation. J. Biol. Chem. 273: 21368 (10.1074/jbc.273.33.21368)
  43. Chen, Y., F. Le Caherec, S. L. Chuck. 1998. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to ApoB in the Sec 61 complex. J. Biol. Chem. 273: 11887 (10.1074/jbc.273.19.11887)
  44. Keller, S. H., J. Lindstrom, P. Taylor. 1998. Inhibition of glucose trimming with castanospermine reduces calnexin association and promotes proteasome degradation of the α-subunit of the nicotinic acetylcholine receptor. J. Biol. Chem. 273: 17064 (10.1074/jbc.273.27.17064)
  45. Liu, Y., P. Choudhury, C. M. Cabral, R. N. Sifers. 1999. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem. 274: 5861 (10.1074/jbc.274.9.5861)
  46. Zhang, Q., M. Tector, R. D. Salter. 1995. Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J. Biol. Chem. 270: 3944 (10.1074/jbc.270.8.3944)
  47. Arunachalam, B., P. Cresswell. 1995. Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J. Biol. Chem. 270: 2784 (10.1074/jbc.270.6.2784)
  48. Kim, P. S., P. Arvan. 1995. Calnexin and Bip act as sequential molecular chaperones during thyroglobulin folding in the ER. J. Cell Biol. 128: 29 (10.1083/jcb.128.1.29)
  49. Loo, T. W., D. M. Clarke. 1994. Prolonged association of temperature-sensitive mutants of human P-glycoprotein with calnexin during biogenesis. J. Biol. Chem. 269: 28683 (10.1016/S0021-9258(19)61959-9)
  50. Loo, T. W., D. M. Clarke. 1995. P-glycoprotein: association between domains and between domains and molecular chaperones. J. Biol. Chem. 270: 21839 (10.1074/jbc.270.37.21839)
  51. Cannon, K. S., D. N. Hebert, A. Helenius. 1996. Glycan dependent and independent association of vesicular stomatitis virus G protein with calnexin. J. Biol. Chem. 271: 14280 (10.1074/jbc.271.24.14280)
  52. Pillai, S., D. Baltimore. 1987. Myristoylation and the post-translational acquisition of hydrophobicity by the membrane immunoglobulin heavy-chain polypeptide in B lymphocytes. Proc. Natl. Acad. Sci. USA 84: 7654 (10.1073/pnas.84.21.7654)
  53. Brouns, G. S., E. de Vries, J. J. Neefjes, J. Borst. 1996. Assembled pre-B cell receptor complexes are retained in the endoplasmic reticulum by a mechanism that is not selective for the pseudo light chain. J. Biol. Chem. 271: 19272 (10.1074/jbc.271.32.19272)
Dates
Type When
Created 11 years, 4 months ago (April 21, 2014, 10:34 p.m.)
Deposited 8 months ago (Jan. 2, 2025, 1:04 p.m.)
Indexed 8 months ago (Jan. 3, 2025, 12:33 a.m.)
Issued 25 years, 4 months ago (May 1, 2000)
Published 25 years, 4 months ago (May 1, 2000)
Published Print 25 years, 4 months ago (May 1, 2000)
Funders 0

None

@article{Ho_2000, title={Accelerated Proteasomal Degradation of Membrane Ig Heavy Chains}, volume={164}, ISSN={1550-6606}, url={http://dx.doi.org/10.4049/jimmunol.164.9.4713}, DOI={10.4049/jimmunol.164.9.4713}, number={9}, journal={The Journal of Immunology}, publisher={Oxford University Press (OUP)}, author={Ho, Siew C. and Chaudhuri, Subhra and Bachhawat, Anand and McDonald, Kenneth and Pillai, Shiv}, year={2000}, month=may, pages={4713–4719} }