Crossref journal-article
Springer Science and Business Media LLC
MRS Bulletin (297)
Abstract

AbstractTo Turnbull's study of the kinetic problem of nucleation and growth of crystals, we add the further enquiry into what lies behind the slow nucleation kinetics of glass-formers. Our answer to this question leads to the proposal of conditions in which a pure liquid metal, monatomic and elemental, can be vitrified. Using the case of high-pressure liquid germanium, we give electron microscope evidence for the validity of our thinking.On the question of how liquids behave when crystals do not form, Turnbull pioneered the study of glass transitions in metallic alloys, measuring the heat capacity change at the glass transition Tg for the first time, and developing with Cohen the free volume model for the temperature dependence of liquid transport properties approaching Tg. We extend the phenomenological picture to include networks where free volume does not play a role and reveal a pattern of behavior that provides for a classification of glass-formers (from “strong” to “fragile”). Where Turnbull studied supercooled liquid metals and P4 to the homogeneous nucleation limit using small droplets, we studied supercooled water in capillaries and emulsions to the homogeneous nucleation limit near −40°C. We discuss the puzzling divergences observed that are now seen as part of a cooperative transition that leads to very untypical glass-transition behavior at lower temperatures (when crystallization is bypassed by hyperquenching). Finally, we show how our interpretation of water behavior can be seen as a bridge between the behavior of the “strong” (network) liquids of classical glass science (e.g., SiO2) and the “fragile” behavior of typical molecular glass-formers. The link is made using a “Gaussian excitations” model by Matyushov and the author in which the spike in heat capacity for water is pushed by cooperativity (disorder stabilization of excitations) into a first-order transition to the ground state, at a temperature typically below Tg. In exceptional cases like triphenyl phosphite, this liquid-to-glass first-order transition lies above Tg and can be studied in detail.

Bibliography

Angell, C. A. (2008). Glass-Formers and Viscous Liquid Slowdown since David Turnbull: Enduring Puzzles and New Twists. MRS Bulletin, 33(5), 544–555.

Authors 1
  1. C.A. Angell (first)
References 108 Referenced 118
  1. 108. Users of this form should be aware that it greatly overemphasizes the early couple of orders of magnitude of frequency decrease; hence, unless this is taken into account, it gives a portrayal of liquid behavior that is not a good guide to what is happening near T g. The analysis of the heat capacity using the form S ex = C p log(T/T m) does the opposite.
  2. 10.1021/j100216a028 / J. Chem. Phys. by Smith (1982)
  3. 10.1126/science.1103073
  4. 10.1038/369633a0
  5. 10.1016/S0022-3697(03)00278-6
  6. 10.1038/299810a0
  7. 10.1063/1.444724
  8. 10.1021/jp003639y
  9. 10.1016/S0022-3093(00)00139-3
  10. 10.1063/1.104920
  11. 10.1021/j100518a011
  12. 88. Souda R. , Chem. Phys. Lett. (2005).
  13. 10.1103/PhysRevLett.93.215703
  14. 10.1021/jp0623286
  15. 10.1038/nature02295
  16. 10.1126/science.1061757
  17. 10.1103/PhysRevB.63.104204
  18. 79. Angell C.A. , J. Non-Cryst. Solids (2008) in press.
  19. 10.1021/j100395a030
  20. 10.1038/360324a0
  21. {'key': 'S0883769400005200_ref074', 'first-page': '6304', 'author': 'Starr', 'year': '2001', 'journal-title': 'Phys. Rev. E'} / Phys. Rev. E by Starr (2001)
  22. 10.1063/1.1764256
  23. 10.1016/S0378-4371(03)00012-8
  24. 10.1126/science.1131939
  25. 10.1088/0953-8984/15/45/R01
  26. 10.1063/1.1676122
  27. 10.1063/1.1286035
  28. 10.1073/pnas.1233719100
  29. 10.1016/0032-3861(88)90367-9
  30. 10.1016/S0022-3093(00)00198-8
  31. 10.1126/science.274.5288.752
  32. 10.1080/00268979809483148
  33. 10.1038/31110
  34. 10.1063/1.2538712
  35. 10.1021/cr60135a002
  36. 10.1103/PhysRevLett.93.155502
  37. 10.1063/1.1825617
  38. 10.1016/S0022-3093(96)00261-X
  39. 10.1063/1.1677987
  40. 10.1016/0022-3093(72)90269-4
  41. 10.1007/978-3-642-78576-4_2
  42. {'key': 'S0883769400005200_ref093', 'first-page': '16588', 'volume': '102', 'author': 'Xu', 'year': '2005', 'journal-title': 'Proc. Natl. Acad. Sci. USA'} / Proc. Natl. Acad. Sci. USA by Xu (2005)
  43. 10.1016/0021-9614(75)90003-8
  44. 10.1103/PhysRevLett.64.2727
  45. 10.1038/330552a0
  46. {'key': 'S0883769400005200_ref009', 'first-page': '73', 'volume-title': 'AIP Conf. Proc.', 'author': 'Spaepen', 'year': '1978'} / AIP Conf. Proc. by Spaepen (1978)
  47. 10.1007/s11837-000-0160-7
  48. 10.1126/science.225.4666.983
  49. 10.1063/1.1673099
  50. 10.6028/jres.102.013
  51. 10.1063/1.1949211
  52. 10.1039/b000206m
  53. 10.1063/1.470551
  54. 10.1038/nnano.2007.201
  55. 10.1063/1.440303
  56. 10.1103/PhysRevE.52.1694
  57. {'key': 'S0883769400005200_ref094', 'first-page': '16588', 'volume': '102', 'author': 'Xu', 'year': '2005', 'journal-title': 'Proc. Nat. Acad. Sci.'} / Proc. Nat. Acad. Sci. by Xu (2005)
  58. 28. Molinero V. , Sastry S. , Angell C.A. , unpublished work.
  59. 10.1021/j100171a060
  60. 10.1063/1.1730566
  61. 10.1111/j.1151-2916.1992.tb05537.x
  62. 10.1063/1.469071
  63. {'key': 'S0883769400005200_ref025', 'first-page': '367', 'volume-title': 'Lyophilization of Biopharmaceuticals', 'author': 'Angell', 'year': '2005'} / Lyophilization of Biopharmaceuticals by Angell (2005)
  64. 10.1023/A:1018593615171
  65. 10.1038/nature03707
  66. 10.1103/PhysRevLett.93.105502
  67. {'key': 'S0883769400005200_ref063', 'volume': '52', 'author': 'Hush', 'year': '1968', 'journal-title': 'Discuss. Faraday Soc.'} / Discuss. Faraday Soc. by Hush (1968)
  68. 10.1126/science.275.5298.322
  69. 10.1103/PhysRevLett.80.532
  70. 10.1103/PhysRevB.24.2613
  71. 10.1021/cr000689q
  72. 10.1126/science.267.5206.1935
  73. 10.1021/jp061831f
  74. 10.1038/nature06044
  75. 10.1038/369633a0
  76. 10.1063/1.433153
  77. 10.1073/pnas.1233719100
  78. 10.1063/1.458411
  79. 10.1038/416409a
  80. 10.1111/j.1749-6632.1981.tb55451.x
  81. 10.1126/science.267.5204.1615-e
  82. 10.1063/1.1672587
  83. {'key': 'S0883769400005200_ref008', 'first-page': '993', 'volume': '24', 'author': 'Aptekar', 'year': '1979', 'journal-title': 'Sov. Phys. Dokl.'} / Sov. Phys. Dokl. by Aptekar (1979)
  84. 10.1088/0953-8984/14/23/201
  85. {'key': 'S0883769400005200_ref010', 'volume': '97', 'author': 'Bagley', 'year': '1978', 'journal-title': 'Mol. Phys.'} / Mol. Phys. by Bagley (1978)
  86. 10.1063/1.1742646
  87. 10.1080/00107516908204405
  88. {'key': 'S0883769400005200_ref014', 'volume-title': 'Metastable Liquids: Concepts and Principles', 'author': 'Debenedetti', 'year': '1996'} / Metastable Liquids: Concepts and Principles by Debenedetti (1996)
  89. {'key': 'S0883769400005200_ref015', 'volume-title': 'Relaxation in Viscous Liquids and Glasses', 'author': 'Brawer', 'year': '1985'} / Relaxation in Viscous Liquids and Glasses by Brawer (1985)
  90. 10.1103/PhysRevLett.97.075701
  91. 10.1021/jp0458553
  92. 10.1103/PhysRevB.31.5262
  93. {'key': 'S0883769400005200_ref024', 'volume-title': 'Glass: Structure by Spectroscopy', 'author': 'Wong', 'year': '1976'} / Glass: Structure by Spectroscopy by Wong (1976)
  94. 10.1103/RevModPhys.78.953
  95. 10.1016/S0022-3093(96)00261-X
  96. 29. Molinero V. , unpublished work.
  97. 10.1038/nmat994
  98. 34. Kapko V. , Matyushov D. , and Angell C.A. are currently demonstrating the generation of a phase diagram with features close to those of Figure 6, obtained for a system in which a Lennard–Jones sphere is systematically distorted to create a rod-like atom. A wide region about the eutectic is a computer glass-former, with interesting liquid-state properties.
  99. 35. Kapko V. , Matyushov D. , Angell C.A. , Abs. Phys. Soc. (Spring meeting, 2007) abs. L27–3.
  100. 10.1063/1.1744141
  101. 10.1063/1.1744275
  102. 10.1103/PhysRevLett.68.974
  103. 10.1103/PhysRevLett.80.2338
  104. 10.1146/annurev.physchem.51.1.99
  105. 10.1063/1.1396679
  106. 10.1038/35070517
  107. {'key': 'S0883769400005200_ref098', 'first-page': '123', 'author': 'Mishima', 'year': '2005', 'journal-title': 'J. Chem. Phys.'} / J. Chem. Phys. by Mishima (2005)
  108. 10.1063/1.480394
Dates
Type When
Created 14 years, 6 months ago (Feb. 2, 2011, 7:56 a.m.)
Deposited 4 years, 5 months ago (Feb. 24, 2021, 4:11 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 9 a.m.)
Issued 17 years, 3 months ago (May 1, 2008)
Published 17 years, 3 months ago (May 1, 2008)
Published Online 14 years, 6 months ago (Jan. 31, 2011)
Published Print 17 years, 3 months ago (May 1, 2008)
Funders 0

None

@article{Angell_2008, title={Glass-Formers and Viscous Liquid Slowdown since David Turnbull: Enduring Puzzles and New Twists}, volume={33}, ISSN={1938-1425}, url={http://dx.doi.org/10.1557/mrs2008.108}, DOI={10.1557/mrs2008.108}, number={5}, journal={MRS Bulletin}, publisher={Springer Science and Business Media LLC}, author={Angell, C.A.}, year={2008}, month=may, pages={544–555} }