Abstract
AbstractTo Turnbull's study of the kinetic problem of nucleation and growth of crystals, we add the further enquiry into what lies behind the slow nucleation kinetics of glass-formers. Our answer to this question leads to the proposal of conditions in which a pure liquid metal, monatomic and elemental, can be vitrified. Using the case of high-pressure liquid germanium, we give electron microscope evidence for the validity of our thinking.On the question of how liquids behave when crystals do not form, Turnbull pioneered the study of glass transitions in metallic alloys, measuring the heat capacity change at the glass transition Tg for the first time, and developing with Cohen the free volume model for the temperature dependence of liquid transport properties approaching Tg. We extend the phenomenological picture to include networks where free volume does not play a role and reveal a pattern of behavior that provides for a classification of glass-formers (from “strong” to “fragile”). Where Turnbull studied supercooled liquid metals and P4 to the homogeneous nucleation limit using small droplets, we studied supercooled water in capillaries and emulsions to the homogeneous nucleation limit near −40°C. We discuss the puzzling divergences observed that are now seen as part of a cooperative transition that leads to very untypical glass-transition behavior at lower temperatures (when crystallization is bypassed by hyperquenching). Finally, we show how our interpretation of water behavior can be seen as a bridge between the behavior of the “strong” (network) liquids of classical glass science (e.g., SiO2) and the “fragile” behavior of typical molecular glass-formers. The link is made using a “Gaussian excitations” model by Matyushov and the author in which the spike in heat capacity for water is pushed by cooperativity (disorder stabilization of excitations) into a first-order transition to the ground state, at a temperature typically below Tg. In exceptional cases like triphenyl phosphite, this liquid-to-glass first-order transition lies above Tg and can be studied in detail.
References
108
Referenced
118
- 108. Users of this form should be aware that it greatly overemphasizes the early couple of orders of magnitude of frequency decrease; hence, unless this is taken into account, it gives a portrayal of liquid behavior that is not a good guide to what is happening near T g. The analysis of the heat capacity using the form S ex = C p log(T/T m) does the opposite.
10.1021/j100216a028
/ J. Chem. Phys. by Smith (1982)10.1126/science.1103073
10.1038/369633a0
10.1016/S0022-3697(03)00278-6
10.1038/299810a0
10.1063/1.444724
10.1021/jp003639y
10.1016/S0022-3093(00)00139-3
10.1063/1.104920
10.1021/j100518a011
- 88. Souda R. , Chem. Phys. Lett. (2005).
10.1103/PhysRevLett.93.215703
10.1021/jp0623286
10.1038/nature02295
10.1126/science.1061757
10.1103/PhysRevB.63.104204
- 79. Angell C.A. , J. Non-Cryst. Solids (2008) in press.
10.1021/j100395a030
10.1038/360324a0
{'key': 'S0883769400005200_ref074', 'first-page': '6304', 'author': 'Starr', 'year': '2001', 'journal-title': 'Phys. Rev. E'}
/ Phys. Rev. E by Starr (2001)10.1063/1.1764256
10.1016/S0378-4371(03)00012-8
10.1126/science.1131939
10.1088/0953-8984/15/45/R01
10.1063/1.1676122
10.1063/1.1286035
10.1073/pnas.1233719100
10.1016/0032-3861(88)90367-9
10.1016/S0022-3093(00)00198-8
10.1126/science.274.5288.752
10.1080/00268979809483148
10.1038/31110
10.1063/1.2538712
10.1021/cr60135a002
10.1103/PhysRevLett.93.155502
10.1063/1.1825617
10.1016/S0022-3093(96)00261-X
10.1063/1.1677987
10.1016/0022-3093(72)90269-4
10.1007/978-3-642-78576-4_2
{'key': 'S0883769400005200_ref093', 'first-page': '16588', 'volume': '102', 'author': 'Xu', 'year': '2005', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}
/ Proc. Natl. Acad. Sci. USA by Xu (2005)10.1016/0021-9614(75)90003-8
10.1103/PhysRevLett.64.2727
10.1038/330552a0
{'key': 'S0883769400005200_ref009', 'first-page': '73', 'volume-title': 'AIP Conf. Proc.', 'author': 'Spaepen', 'year': '1978'}
/ AIP Conf. Proc. by Spaepen (1978)10.1007/s11837-000-0160-7
10.1126/science.225.4666.983
10.1063/1.1673099
10.6028/jres.102.013
10.1063/1.1949211
10.1039/b000206m
10.1063/1.470551
10.1038/nnano.2007.201
10.1063/1.440303
10.1103/PhysRevE.52.1694
{'key': 'S0883769400005200_ref094', 'first-page': '16588', 'volume': '102', 'author': 'Xu', 'year': '2005', 'journal-title': 'Proc. Nat. Acad. Sci.'}
/ Proc. Nat. Acad. Sci. by Xu (2005)- 28. Molinero V. , Sastry S. , Angell C.A. , unpublished work.
10.1021/j100171a060
10.1063/1.1730566
10.1111/j.1151-2916.1992.tb05537.x
10.1063/1.469071
{'key': 'S0883769400005200_ref025', 'first-page': '367', 'volume-title': 'Lyophilization of Biopharmaceuticals', 'author': 'Angell', 'year': '2005'}
/ Lyophilization of Biopharmaceuticals by Angell (2005)10.1023/A:1018593615171
10.1038/nature03707
10.1103/PhysRevLett.93.105502
{'key': 'S0883769400005200_ref063', 'volume': '52', 'author': 'Hush', 'year': '1968', 'journal-title': 'Discuss. Faraday Soc.'}
/ Discuss. Faraday Soc. by Hush (1968)10.1126/science.275.5298.322
10.1103/PhysRevLett.80.532
10.1103/PhysRevB.24.2613
10.1021/cr000689q
10.1126/science.267.5206.1935
10.1021/jp061831f
10.1038/nature06044
10.1038/369633a0
10.1063/1.433153
10.1073/pnas.1233719100
10.1063/1.458411
10.1038/416409a
10.1111/j.1749-6632.1981.tb55451.x
10.1126/science.267.5204.1615-e
10.1063/1.1672587
{'key': 'S0883769400005200_ref008', 'first-page': '993', 'volume': '24', 'author': 'Aptekar', 'year': '1979', 'journal-title': 'Sov. Phys. Dokl.'}
/ Sov. Phys. Dokl. by Aptekar (1979)10.1088/0953-8984/14/23/201
{'key': 'S0883769400005200_ref010', 'volume': '97', 'author': 'Bagley', 'year': '1978', 'journal-title': 'Mol. Phys.'}
/ Mol. Phys. by Bagley (1978)10.1063/1.1742646
10.1080/00107516908204405
{'key': 'S0883769400005200_ref014', 'volume-title': 'Metastable Liquids: Concepts and Principles', 'author': 'Debenedetti', 'year': '1996'}
/ Metastable Liquids: Concepts and Principles by Debenedetti (1996){'key': 'S0883769400005200_ref015', 'volume-title': 'Relaxation in Viscous Liquids and Glasses', 'author': 'Brawer', 'year': '1985'}
/ Relaxation in Viscous Liquids and Glasses by Brawer (1985)10.1103/PhysRevLett.97.075701
10.1021/jp0458553
10.1103/PhysRevB.31.5262
{'key': 'S0883769400005200_ref024', 'volume-title': 'Glass: Structure by Spectroscopy', 'author': 'Wong', 'year': '1976'}
/ Glass: Structure by Spectroscopy by Wong (1976)10.1103/RevModPhys.78.953
10.1016/S0022-3093(96)00261-X
- 29. Molinero V. , unpublished work.
10.1038/nmat994
- 34. Kapko V. , Matyushov D. , and Angell C.A. are currently demonstrating the generation of a phase diagram with features close to those of Figure 6, obtained for a system in which a Lennard–Jones sphere is systematically distorted to create a rod-like atom. A wide region about the eutectic is a computer glass-former, with interesting liquid-state properties.
- 35. Kapko V. , Matyushov D. , Angell C.A. , Abs. Phys. Soc. (Spring meeting, 2007) abs. L27–3.
10.1063/1.1744141
10.1063/1.1744275
10.1103/PhysRevLett.68.974
10.1103/PhysRevLett.80.2338
10.1146/annurev.physchem.51.1.99
10.1063/1.1396679
10.1038/35070517
{'key': 'S0883769400005200_ref098', 'first-page': '123', 'author': 'Mishima', 'year': '2005', 'journal-title': 'J. Chem. Phys.'}
/ J. Chem. Phys. by Mishima (2005)10.1063/1.480394
Dates
Type | When |
---|---|
Created | 14 years, 6 months ago (Feb. 2, 2011, 7:56 a.m.) |
Deposited | 4 years, 5 months ago (Feb. 24, 2021, 4:11 p.m.) |
Indexed | 2 weeks, 3 days ago (Aug. 6, 2025, 9 a.m.) |
Issued | 17 years, 3 months ago (May 1, 2008) |
Published | 17 years, 3 months ago (May 1, 2008) |
Published Online | 14 years, 6 months ago (Jan. 31, 2011) |
Published Print | 17 years, 3 months ago (May 1, 2008) |
@article{Angell_2008, title={Glass-Formers and Viscous Liquid Slowdown since David Turnbull: Enduring Puzzles and New Twists}, volume={33}, ISSN={1938-1425}, url={http://dx.doi.org/10.1557/mrs2008.108}, DOI={10.1557/mrs2008.108}, number={5}, journal={MRS Bulletin}, publisher={Springer Science and Business Media LLC}, author={Angell, C.A.}, year={2008}, month=may, pages={544–555} }