Crossref journal-article
Society for Neuroscience
The Journal of Neuroscience (393)
Abstract

In the adult cerebral cortex, the neurotransmitter GABA is strongly inhibitory, as it profoundly decreases neuronal excitability and suppresses the network propensity for synchronous activity. When fast, GABAAreceptor (GABAAR)-mediated neurotransmission is blocked in the mature cortex, neuronal firing is synchronized via recurrent excitatory (glutamatergic) synaptic connections, generating population discharges manifested extracellularly as spontaneous paroxysmal field potentials (sPFPs). This epileptogenic effect of GABAAR antagonists has rarely been observed in the neonatal cortex, and indeed, GABA in the neonate has been proposed to have an excitatory, rather than inhibitory, action. In contrast, we show here that when fast GABAergic neurotransmission was blocked in slices of neonatal mouse and rat hippocampus and neocortex, sPFPs occurred in nearly half the slices from postnatal day 4 (P4) to P7 neocortex and in most slices from P2 to P7 hippocampus. In Mg2+-free solution, GABAAR antagonists elicited sPFPs in nearly all slices of P2 and older neocortex and P0 and older hippocampus. Mg2+-free solution alone induced spontaneous events in the majority of P2 and older slices from both regions; addition of GABAAR antagonists caused a dramatic increase in the mean amplitude, but not frequency, of these events in the hippocampus and in their mean frequency, but not amplitude, in the neocortex. In the hippocampus, GABAAR agonists suppressed amplitudes, but not frequency, of sPFPs, whereas glutamate antagonists suppressed frequency but not amplitudes. We conclude that neonatal rodent cerebral cortex possesses glutamatergic circuits capable of generating synchronous network activity and that, as in the adult, tonic GABAAR-mediated inhibition prevents this activity from becoming paroxysmal.

Bibliography

Wells, J. E., Porter, J. T., & Agmon, A. (2000). GABAergic Inhibition Suppresses Paroxysmal Network Activity in the Neonatal Rodent Hippocampus and Neocortex. The Journal of Neuroscience, 20(23), 8822–8830.

Authors 3
  1. Jason E. Wells (first)
  2. James T. Porter (additional)
  3. Ariel Agmon (additional)
References 85 Referenced 64
  1. 10.1152/jn.1992.68.1.345 / J Neurophysiol / NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. by Agmon (1992)
  2. 10.1523/JNEUROSCI.16-15-04684.1996
  3. 10.1038/11184
  4. 10.1113/jphysiol.1989.sp017762
  5. 10.1016/S0079-6123(08)60545-2
  6. 10.1016/S0166-2236(97)01147-8
  7. 10.1152/jn.1999.81.5.2095 / J Neurophysiol / Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. by Bolea (1999)
  8. 10.1152/jn.1993.69.1.230 / J Neurophysiol / Developmental changes in NMDA and non-NMDA receptor-mediated synaptic potentials in rat neocortex. by Burgard (1993)
  9. 10.1113/jphysiol.1996.sp021505
  10. 10.1016/0920-1211(90)90061-Y
  11. 10.1080/08990229870691
  12. 10.1038/310685a0
  13. 10.1113/jphysiol.1988.sp017390
  14. 10.1002/neu.480250305
  15. 10.1152/jn.1998.79.6.2911 / J Neurophysiol / Effect of bicuculline on thalamic activity: a direct blockade of IAHP in reticularis neurons. by Debarbieux (1998)
  16. 10.1038/381071a0
  17. 10.1016/0165-3806(90)90005-J
  18. 10.1046/j.1471-4159.1996.67041426.x / J Neurochem / Signaling pathway downstream of GABAA receptor in the growth cone. by Fukura (1996)
  19. 10.1111/j.1469-7793.1998.219bu.x
  20. Good PI (1999) Resampling methods. (Birkhauser, Boston). (10.1007/978-1-4757-3049-4)
  21. 10.1111/j.1460-9568.1993.tb00240.x
  22. 10.1152/jn.1982.48.6.1321 / J Neurophysiol / Mechanisms of neocortical epileptogenesis in vitro. by Gutnick (1982)
  23. 10.1152/jn.1987.58.5.1052 / J Neurophysiol / Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. by Hablitz (1987)
  24. 10.1159/000070629
  25. 10.1016/0006-8993(83)90500-0
  26. 10.1523/JNEUROSCI.17-13-05119.1997
  27. 10.1111/j.1460-9568.1994.tb00991.x
  28. 10.1016/S0896-6273(00)80267-6
  29. 10.1016/S0304-3940(97)00508-9
  30. 10.1126/science.7444469
  31. 10.1159/000017380
  32. 10.1007/s004240050915
  33. 10.1016/0306-4522(95)00337-I
  34. 10.1113/jphysiol.1997.sp021900
  35. 10.1016/0165-3806(87)90206-9 / Brain Res / Cellular and synaptic physiology and epileptogenesis of developing rat neocortical neurons in vitro. by Kriegstein (1987)
  36. 10.1152/jn.2000.83.1.359 / J Neurophysiol / Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0–P2) rat hippocampus. by Lamsa (2000)
  37. 10.1113/jphysiol.1995.sp020882
  38. 10.1016/S0896-6273(00)80265-2
  39. {'key': '2023041302470286000_20.23.8822.39', 'first-page': '189', 'article-title': 'GABA is the principal fast-acting excitatory transmitter in the neonatal brain.', 'volume': '79', 'author': 'Leinekugel', 'year': '1999', 'journal-title': 'Adv Neurol'} / Adv Neurol / GABA is the principal fast-acting excitatory transmitter in the neonatal brain. by Leinekugel (1999)
  40. 10.1016/0168-0102(94)90025-6
  41. 10.1016/S0306-4522(97)00410-7
  42. 10.1016/0896-6273(95)90008-X
  43. 10.1152/jn.1991.65.2.247 / J Neurophysiol / Postnatal maturation of the GABAergic system in rat neocortex. by Luhmann (1991)
  44. 10.1016/0304-3940(91)90099-F
  45. 10.1046/j.1460-9568.1998.00097.x
  46. 10.1016/S0304-3940(99)00213-X
  47. 10.1016/0165-3806(89)90113-2
  48. 10.1016/0165-3806(96)00064-8
  49. 10.1523/JNEUROSCI.04-03-00860.1984
  50. 10.1016/0165-3806(89)90063-1
  51. 10.1523/JNEUROSCI.16-20-06414.1996
  52. 10.1152/jn.1999.82.2.570 / J Neurophysiol / Changing properties of GABA(A) receptor-mediated signaling during early neocortical development. by Owens (1999)
  53. 10.1523/JNEUROSCI.20-03-01170.2000
  54. 10.1038/4532
  55. 10.1016/0165-3806(96)00040-5
  56. 10.1016/S0165-3806(99)00098-X
  57. 10.1038/16697
  58. 10.1523/JNEUROSCI.18-21-08863.1998
  59. 10.1152/jn.1987.57.6.1911 / J Neurophysiol / 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. by Rutecki (1987)
  60. 10.1016/S0306-4522(97)00209-1
  61. 10.1016/0306-4522(94)90594-0
  62. 10.1016/0165-3806(81)90017-1 / Brain Res / Development of rabbit hippocampus: physiology. by Schwartzkroin (1981)
  63. 10.1016/0006-8993(78)90776-X
  64. 10.1113/jphysiol.1995.sp020973
  65. 10.1152/jn.1992.68.1.197
  66. 10.1523/JNEUROSCI.17-04-01435.1997
  67. 10.1016/S0304-3940(98)00361-9
  68. 10.1016/0165-3806(84)90046-4 / Brain Res / Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells. by Swann (1984)
  69. 10.1016/0306-4522(89)90004-3
  70. Traub D Miles R (1991) Neuronal networks of the hippocampus. (Cambridge UP, Cambridge, UK). (10.1017/CBO9780511895401)
  71. 10.1113/jphysiol.1994.sp020259 / J Physiol (Lond) / Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. by Traub (1994)
  72. 10.1113/jphysiol.1995.sp021036 / J Physiol (Lond) / Cellular mechanisms of 4-aminopyridine-induced synchronized after-discharges in the rat hippocampal slice. by Traub (1995)
  73. 10.1016/0920-1211(95)00024-5
  74. 10.1523/JNEUROSCI.17-01-00277.1997
  75. 10.1113/jphysiol.1995.sp020848 / J Physiol (Lond) / Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. by Whittington (1995)
  76. 10.1126/science.451569
  77. 10.1152/jn.1983.49.2.442 / J Neurophysiol / Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. by Wong (1983)
  78. {'key': '2023041302470286000_20.23.8822.78', 'first-page': '583', 'article-title': 'Cellular basis of neuronal synchrony in epilepsy.', 'volume': '44', 'author': 'Wong', 'year': '1986', 'journal-title': 'Adv Neurol'} / Adv Neurol / Cellular basis of neuronal synchrony in epilepsy. by Wong (1986)
  79. 10.1016/S0304-3940(98)00073-1
  80. 10.1113/jphysiol.1994.sp020231 / J Physiol (Lond) / Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro. by Xie (1994)
  81. 10.1016/0896-6273(91)90243-S
  82. 10.1126/science.1496379
  83. 10.1016/0896-6273(95)90236-8
  84. 10.1016/0165-3806(90)90171-T
  85. 10.1113/jphysiol.1991.sp018864
Dates
Type When
Created 7 years, 4 months ago (April 5, 2018, 11:10 a.m.)
Deposited 2 years, 4 months ago (April 13, 2023, 9:36 a.m.)
Indexed 11 months, 4 weeks ago (Sept. 6, 2024, 4:45 a.m.)
Issued 24 years, 9 months ago (Dec. 1, 2000)
Published 24 years, 9 months ago (Dec. 1, 2000)
Published Online 24 years, 9 months ago (Dec. 1, 2000)
Published Print 24 years, 9 months ago (Dec. 1, 2000)
Funders 0

None

@article{Wells_2000, title={GABAergic Inhibition Suppresses Paroxysmal Network Activity in the Neonatal Rodent Hippocampus and Neocortex}, volume={20}, ISSN={1529-2401}, url={http://dx.doi.org/10.1523/jneurosci.20-23-08822.2000}, DOI={10.1523/jneurosci.20-23-08822.2000}, number={23}, journal={The Journal of Neuroscience}, publisher={Society for Neuroscience}, author={Wells, Jason E. and Porter, James T. and Agmon, Ariel}, year={2000}, month=dec, pages={8822–8830} }