Crossref journal-article
Oxford University Press (OUP)
Bulletin of the Chemical Society of Japan (286)
Abstract

Abstract This account describes excitation mechanisms and ultrafast nuclear dynamics at metal surfaces induced upon photon irradiation. After reviewing possible excitation mechanisms for photochemistry of adsorbates on metal surfaces, we discuss the ultra-violet photochemistry of saturated hydrocarbons, i.e., methane and cyclohexane, on metal surfaces. Although these alkanes in the gas phase do not absorb photons at ≈6 eV, CH bond dissociation takes place upon 6.4-eV photon irradiation on metal surfaces. Hybridization between CH antibonding orbitals of the alkanes and metal bands, forming a new band across the Fermi level, is proposed to be responsible for both the photochemistry and CH vibrational mode softening. Since electronic relaxation at metal surfaces takes place very rapidly, most of excited adsorbates do not proceed to dissociation and/or desorption, but rather they are vibrationally excited. To probe photo-induced nuclear motions in real time, we developed femtosecond (fs) time-resolved second harmonic generation spectroscopy on metal surfaces. This method was used to explore the dynamics of photo-excited coherent vibration at Pt(111) surfaces covered with alkali-metal atoms. Irradiation of fs pump-laser pulses induced coherent vibrational motions of the stretching vibration of alkali atoms with respect to the metal surface and the Rayleigh modes of the Pt surface, which manifest themselves in modulations of second harmonic intensity of probe pulses. We also demonstrated that selective excitation of a phonon mode can be achieved by using tailored light pulse trains.

Bibliography

Matsumoto, Y. (2007). Photochemistry and Photo-Induced Ultrafast Dynamics at Metal Surfaces. Bulletin of the Chemical Society of Japan, 80(5), 842–855.

Authors 1
  1. Yoshiyasu Matsumoto (first)
References 82 Referenced 14
  1. 10.1016/0167-5729(83)90005-5
  2. 10.1016/0167-5729(91)90009-M
  3. {'key': '2024012019361520400_r3'}
  4. 10.1146/annurev.physchem.53.090701.100226
  5. 10.1021/cr050161r
  6. 10.1021/cr050165w
  7. 10.1063/1.1725730
  8. 10.1139/p64-083
  9. 10.1103/PhysRevB.21.3811
  10. 10.1016/0167-5729(96)80001-X
  11. {'key': '2024012019361520400_r11'}
  12. 10.1126/science.285.5430.1042
  13. 10.1103/PhysRevLett.91.226102
  14. 10.1126/science.288.5470.1402
  15. 10.1016/S0009-2614(02)01628-7
  16. 10.1103/PhysRevLett.92.057401
  17. 10.1103/PhysRevB.71.085414
  18. 10.1063/1.444812
  19. 10.1016/0009-2614(94)00849-3
  20. 10.1063/1.471329
  21. 10.1063/1.472316
  22. 10.1016/0039-6028(96)00137-9
  23. 10.1103/PhysRevLett.76.1751
  24. {'key': '2024012019361520400_r24'}
  25. 10.1103/PhysRevLett.40.1044
  26. 10.1016/0368-2048(86)85043-5
  27. 10.1016/0039-6028(89)90526-8
  28. 10.1016/0039-6028(93)90655-4
  29. 10.1103/PhysRevLett.80.121
  30. 10.1016/S0166-1280(98)00357-1
  31. 10.1107/S0909049500019877
  32. 10.1016/S0009-2614(00)01308-7
  33. 10.1002/1521-3773(20020517)41:10<1735::AID-ANIE1735>3.0.CO;2-G
  34. 10.1063/1.1546266
  35. {'key': '2024012019361520400_r35'}
  36. 10.1063/1.1701304
  37. 10.1063/1.444111
  38. 10.1063/1.477394
  39. 10.1063/1.1288145
  40. 10.1063/1.1672299
  41. 10.1063/1.437464
  42. 10.1063/1.473410
  43. 10.1103/PhysRevLett.75.2176
  44. 10.1021/j100169a042
  45. 10.1016/0039-6028(93)90900-5
  46. {'key': '2024012019361520400_r46'}
  47. 10.1039/B511496A
  48. 10.1063/1.474403
  49. 10.1063/1.477739
  50. 10.1103/PhysRevLett.91.046102
  51. 10.1063/1.1539866
  52. 10.1103/PhysRevLett.96.146104
  53. {'key': '2024012019361520400_r53'}
  54. {'key': '2024012019361520400_r54'}
  55. 10.1021/cr00025a006
  56. 10.1103/PhysRevB.45.768
  57. 10.1103/PhysRevLett.73.3243
  58. {'key': '2024012019361520400_r58'}
  59. 10.1134/1.1799196
  60. 10.1016/0167-5729(88)90007-6
  61. 10.1016/0079-6816(89)90013-0
  62. 10.1146/annurev.pc.41.100190.004015
  63. {'key': '2024012019361520400_r63'}
  64. 10.1016/0167-5729(95)00010-0
  65. 10.1016/0039-6028(94)91252-1
  66. 10.1103/PhysRev.47.479
  67. 10.1103/PhysRevB.43.14722
  68. 10.1016/0039-6028(94)90215-1
  69. {'key': '2024012019361520400_r69'}
  70. 10.1103/PhysRevB.61.13973
  71. 10.1103/PhysRevLett.87.176803
  72. 10.1103/PhysRevB.45.6345
  73. 10.1103/PhysRevLett.61.1380
  74. 10.1103/PhysRevB.62.R7771
  75. 10.1063/1.471526
  76. 10.1016/S0039-6028(98)00810-3
  77. 10.1016/0039-6028(88)90267-1
  78. 10.1039/b507128c
  79. 10.1364/JOSAB.12.001343
  80. 10.1364/OL.15.000051
  81. 10.1080/01468038208202851
  82. 10.1103/PhysRevA.47.1136
Dates
Type When
Created 18 years, 3 months ago (May 14, 2007, 4:39 a.m.)
Deposited 1 year, 7 months ago (Jan. 20, 2024, 2:45 p.m.)
Indexed 1 year, 3 months ago (May 22, 2024, 9:14 a.m.)
Issued 18 years, 4 months ago (May 1, 2007)
Published 18 years, 4 months ago (May 1, 2007)
Published Online 18 years, 3 months ago (May 14, 2007)
Published Print 18 years, 3 months ago (May 15, 2007)
Funders 0

None

@article{Matsumoto_2007, title={Photochemistry and Photo-Induced Ultrafast Dynamics at Metal Surfaces}, volume={80}, ISSN={1348-0634}, url={http://dx.doi.org/10.1246/bcsj.80.842}, DOI={10.1246/bcsj.80.842}, number={5}, journal={Bulletin of the Chemical Society of Japan}, publisher={Oxford University Press (OUP)}, author={Matsumoto, Yoshiyasu}, year={2007}, month=may, pages={842–855} }