Crossref journal-article
The Company of Biologists
Journal of Experimental Biology (237)
Abstract

SUMMARYAmphibia have two classes of olfactory receptors (ORs), class I (fish-like receptors) and class II (mammalian-like receptors). These two receptor classes correspond to the two classes identified in other vertebrates, and amphibians thus provide a unique opportunity to compare olfactory receptors of both classes in one animal species, without the constraints of evolutionary distance between different vertebrate orders, such as fish and mammals. We therefore identified the complete open reading frames of class I and class II ORs in Xenopus laevis. In addition to allowing a representative comparison of the deduced amino acid sequences between both receptor classes, we were also able to perform differential functional analysis. These studies revealed distinct class-specific motifs, particularly in the extracellular loops 2 and 3, which might be of importance for the interaction with odorants, as well as in the intracellular loops 2 and 3, which might be responsible for interactions with specific G-proteins. The results of functional expression studies in Xenopus oocytes, comparing distinct receptor types, support the idea that class I receptors are activated by water-soluble odorants, whereas class II receptors are activated by volatile compounds.

Bibliography

Mezler, M., Fleischer, J., & Breer, H. (2001). Characteristic features and ligand specificity of the two olfactory receptor classes fromXenopus laevis. Journal of Experimental Biology, 204(17), 2987–2997.

Authors 3
  1. Mario Mezler (first)
  2. Jörg Fleischer (additional)
  3. Heinz Breer (additional)
References 63 Referenced 49
  1. Altner, H. (1962). Untersuchungen über Leistungen und Bau der Nase des südafrikanischen Krallenfrosches Xenopus laevis (Daudin, 1803). Z. vergl. Physiol.45, 272–306. (10.1007/BF00302326)
  2. Barth, A. L., Justice, N. J. and Ngai J. (1997). Asynchronous onset of odorant receptor expression in the developing zebrafish olfactory system. Neuron16, 23–34.
  3. Ben-Arie, N., Lancet, D., Taylor, C., Khen, M., Walker, N., Ledbetter, D. H., Carrozzo, R., Patel, K., Sheer, D., Lehrach, H. and North, M. A. (1994). Olfactory receptor gene cluster on human chromosome 17: possible duplication of an ancestral receptor repertoire. Hum. Mol. Genet.3, 229–235. (10.1093/hmg/3.2.229)
  4. Bozza, T. C. and Kauer, J. S. (1998). Odorant response properties of convergent olfactory receptor neurons. J. Neurosci.18, 4560–9. (10.1523/JNEUROSCI.18-12-04560.1998)
  5. Breer, H. and Benke, D. (1986). Messenger RNA from insect nervous tissue induces expression of neuronal acetylcholine receptors in Xenopus oocytes. Mol. Brain Res.1, 111–117. (10.1016/0169-328X(86)90002-1)
  6. Buck, L. and Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell65, 174–187. (10.1016/0092-8674(91)90418-X)
  7. Caprio, J., Dudek, J. and Robinson, J. J. 2nd. (1989). Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. Gen. Physiol.93, 245–62. (10.1085/jgp.93.2.245)
  8. Chubet, R. G. and Brizzard, B. L. (1996). Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. BioTechniques20, 136–141. (10.2144/96201pf01)
  9. Doupnik, C. A., Lim, N. F., Kofuji, P., Davidson, N. and Lester, H. (1995). Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel. J. Gen. Physiol.106, 1–23. (10.1085/jgp.106.1.1)
  10. Duchamp-Viret, P. and Duchamp, A. (1997). Odor processing in the frog olfactory system. Prog. Neurobiol.53, 561–602. (10.1016/S0301-0082(97)00049-X)
  11. Elepfandt, A. (1996). Sensory perception and the lateral line system in the clawed frog, Xenopus. In The Biology of Xenopus (ed. R. C. Tinsley and H. R. Kobel), pp. 177–193. Oxford: Oxford University Press. (10.1093/oso/9780198549741.003.0007)
  12. Firestein, S. and Werblin, F. (1989). Odor-induced membrane currents in vertebrate-olfactory receptor neurons. Science244, 79–82. (10.1126/science.2704991)
  13. Floriano, W. B., Vaidehi, N., Goddard, III, W. A., Singer, M. S. and Shepherd, G. M. (2000). Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc. Natl. Acad. Sci. USA97, 10712–10716. (10.1073/pnas.97.20.10712)
  14. Föske, H. (1934). Das Geruchsorgan von Xenopus laevis. Z. Anat. Entwicklungsgesch.Bd. 103. (10.1007/BF02118933)
  15. Freitag, J., Krieger, J., Strotmann, J. and Breer, H. (1995). Two classes of olfactory receptors in Xenopus laevis. Neuron15, 1383–1392. (10.1016/0896-6273(95)90016-0)
  16. Freitag, J., Ludwig, G., Andreini, I., Rössler, P. and Breer, H. (1998). Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A183, 635–50. (10.1007/s003590050287)
  17. Freitag, J., Beck, A., Ludwig, G., von Buchholtz, L. and Breer, H. (1999). On the origin of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis). Gene226, 165–174. (10.1016/S0378-1119(98)00575-7)
  18. Friedrich, R. W. and Korsching, S. I. (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron18, 737–52. (10.1016/S0896-6273(00)80314-1)
  19. Grosch, W. (1996). Warum riecht Kaffee so gut? Chemie in unserer Zeit30, 126–133. (10.1002/ciuz.19960300304)
  20. Guttridge, K. L., Smith, L. D. and Miledi, R. (1995). Xenopus Gq alpha subunit activates the phosphoinositol pathway in Xenopus oocytes but does not consistently induce oocyte maturation. Proc. Natl. Acad. Sci. USA92, 1297–1301. (10.1073/pnas.92.5.1297)
  21. Hopp, T. P., Pricket, K. S., Price, V. L., Libby, R. T., March, C. J., Cerretti, D. P., Urdal, D. L. and Conlon, P. J. (1988). A short polypeptide marker sequence useful for recombinant protein identification and purification. BioTechnol.6, 1204–1210. (10.1038/nbt1088-1204)
  22. Iismaa, T., Biden, T. J. and Shine, J. (1995). Structural Determinants of Receptor Function. In G Protein-Coupled Receptors (ed. T. Iismaa, T. J. Biden and J. Shine), pp. 95–133., Springer Verlag, Heidelberg, Germany (10.1007/978-3-662-21930-0_3)
  23. Ivanova, T. T. and Caprio, J. (1993). Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus. J. Gen. Physiol.102, 1085–1105. (10.1085/jgp.102.6.1085)
  24. Ji, T. H., Grossmann, M. and Ji, I. (1998). G protein-coupled receptors. I. Diversity of receptor-ligand interactions. J. Biol. Chem.273, 17299–17302. (10.1074/jbc.273.28.17299)
  25. Kang, J. and Caprio, J. (1991). Electro-olfactogram and multisubunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish, Ictalurus punctatus. J. Gen. Physiol.98, 699–721. (10.1085/jgp.98.4.699)
  26. Kashiwayanagi, M. and Kurihara, K. (1995). Odor responses after complete desensitization of the cAMP-dependent pathway in turtle olfactory cells. Neurosci. Lett.193, 61–64. (10.1016/0304-3940(95)11667-L)
  27. Kiefer, H., Krieger, J., Olszewski, J. D., Von Heijne, G., Prestwich, G. D. and Breer, H. (1996). Expression of an olfactory receptor in Escherichia coli: purification, reconstitution, and ligand binding. Biochemistry35, 16077–16084. (10.1021/bi9612069)
  28. Krapivinsky, G., Gordon, E. A., Wickman, K., Velimirovic, B., Krapivinsky, L. and Clapham, D. E. (1995). The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature374, 135–141. (10.1038/374135a0)
  29. Krautwurst, D., Yau, K.-W. and Reed, R. R. (1998). Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell95, 917–926. (10.1016/S0092-8674(00)81716-X)
  30. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. and Jan, L. Y. (1993). Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature364, 802–806. (10.1038/364802a0)
  31. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature277, 680–685. (10.1038/227680a0)
  32. Lancet, D. and Ben-Arie, N. (1993). Olfactory receptors. Curr. Biol.3, 668–674. (10.1016/0960-9822(93)90064-U)
  33. Leibovici, M., Lapointe, F., Aletta, P. and Ayer-LeLièvre, C. (1996). Avian olfactory receptors: differentiation of olfactory neurons under normal and experimental conditions. Dev. Biol.175, 118–131. (10.1006/dbio.1996.0100)
  34. Liman, E. R., Tytgat, J. and Hess, P. (1992). Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron9, 861–71 (10.1016/0896-6273(92)90239-A)
  35. Methfessel, C., Witzemann, V., Takahashi, T., Mishina, M., Numa, S. and Sakmann, B. (1986). Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflügers Arch.407, 577–588. (10.1007/BF00582635)
  36. Mezler, M., Fleischer, J., Rauselmann, S., Korchi, A., Widmayer, P., Breer, H. and Boekhoff, I. (2001). Identification of non-mammalian Golf subtype: functional role in olfactory signaling of airborne odorants in Xenopus laevis. J. Comp. Neurol. (in press).
  37. Miledi, R., Parker, I. and Sumikawa, K. (1987). Oscillatory chloride current evoked by temperature jumps during muscarinic and serotonergic activation of Xenopus oocytes. J. Physiol.383, 213–229. (10.1113/jphysiol.1987.sp016405)
  38. Murrell, J. R. and Hunter, D. D. (1999). An olfactory sensory neuron line, odora, properly targets olfactory proteins and responds to odorants. J. Neurosci.19, 8260–8270. (10.1523/JNEUROSCI.19-19-08260.1999)
  39. Nef, P., Hermans-Borgmeyer, I., Artieres-Pin, H., Beasley, L., Dionne, V. E. and Heinemann, S. F. (1992). Spatial pattern of receptor expression in the olfactory epithelium. Proc. Natl. Acad. Sci. USA89, 8948–8952. (10.1073/pnas.89.19.8948)
  40. Ngai, J., Dowling, M. M., Buck, L., Axel, R. and Chess, A. (1993a). The family of genes encoding odorant receptors in the channel catfish. Cell72, 657–666. (10.1016/0092-8674(93)90395-7)
  41. Ngai, J., Chess, A., Dowling, M. M., Necles, N., Macagno, E. R. and Axel, R. (1993b). Coding of olfactory information: topography of odorant receptor expression in the catfish olfactory epithelium. Cell72, 667–80. (10.1016/0092-8674(93)90396-8)
  42. Nieuwkoop, P. D. and Faber, J. (1956). Normal Tables of Xenopus laevis, Amsterdam: North Holland.
  43. Quick, M. W. and Lester, H. A. (1994). Methods for expression of excitability proteins in Xenopus oocytes. In Methods in Neuroscience, vol. 19, Ion Channels of Excitable Cells (ed. T. Narahashi), pp. 261–279. San Diego: Academic Press. (10.1016/B978-0-12-185287-0.50020-X)
  44. Raming, K., Krieger, J., Strotmann, J., Boekhoff, I., Kubick, S., Baumstark, C. and Breer, H. (1993). Cloning and expression of odorant receptors. Nature361, 353–356. (10.1038/361353a0)
  45. Restrepo, D., Miyamoto, T., Bryant, B. P. and Teeter, J. H. (1990). Odor stimuli trigger the influx of calcium into olfactory neurons of the channel catfish. Science249, 1166–1168. (10.1126/science.2168580)
  46. Sambrook, J., Fritsch, E. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edition. Cold Spring Harbor Laboratory Press (W106).
  47. Schmid, A., Thierauch, K. H., Schleuning, W. D. and Dinter, H. (1995). Splice variants of the human EP3 receptor for prostaglandin E2. Eur. J. Biochem.228, 23–30. (10.1111/j.1432-1033.1995.tb20223.x)
  48. Sharon, D., Glusman, G., Pilpel, Y., Horn-Saban, S. and Lancet, D. (1998). Genome dynamics, evolution and protein modeling in the olfactory receptor gene superfamily. Ann. NY Acad. Sci.855, 182–193. (10.1111/j.1749-6632.1998.tb10564.x)
  49. Sicard, G. and Holley, A. (1984). Receptor cell responses to odorant: similarities and differences among odorants. Brain Res.292, 283–296. (10.1016/0006-8993(84)90764-9)
  50. Singer, M. S. and Shepherd, G. M. (1994). Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor. NeuroRep.5, 1297–1300. (10.1097/00001756-199406020-00036)
  51. Singer, M. S., Oliviera, L., Vriend, G. and Shepherd, G. M. (1995). Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis. Receptors and Channels3, 89–95.
  52. Speca, D. J., Lin, D. M., Sorensen, P. W., Isacoff, E. Y., Ngai, J. and Dittman, A. H. (1999). Functional identification of a goldfish odorant receptor. Neuron23, 487–98. (10.1016/S0896-6273(00)80802-8)
  53. Stühmer W. (1992). Electrophysiological recording from Xenopus oocytes. In Methods in Enzymology207 (ed. B. Rudy and L. E. Iverson), pp. 319–339. San Diego, CA: Academic Press. (10.1016/0076-6879(92)07021-F)
  54. Sun, H., Kondo, R., Shima, A., Naruse, K., Hori, H. and Chigusa, S. I. (1999). Evolutionary analysis of putative olfactory receptor genes of medaka fish Oryzias latipes. Gene231, 137–145. (10.1016/S0378-1119(99)00094-3)
  55. Tareilus, E., Noé, J. and Breer, H. (1995). Calcium signals in olfactory neurons. Biochim. Biophys. Acta1269, 129–38. (10.1016/0167-4889(95)00105-2)
  56. Touhara, K., Sengoku, S., Inaki, K., Tsuboi, A., Hirono, J., Sato, T., Sakano, H. and Haga, T. (1999). Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl. Acad. Sci. USA96, 4040.4045. (10.1073/pnas.96.7.4040)
  57. Walensky, L. D., Ruat, M., Bakin, R. E., Blackshaw, S., Ronnett, G. V. and Snyder, S. H. (1998). Two novel odorant receptor families expressed in spermatids undergo 5′-splicing. J. Biol. Chem.273, 9378–9387. (10.1074/jbc.273.16.9378)
  58. Weiß, G. (1986). Die Struktur des Geruchsorgans und des Telencephalons beim südafrikanischen Krallenfrosch, Xenopus laevis (Daudin), und ihrer Veränderungen während der Metamorphose. Dissertation, University of Regensburg, Germany.
  59. Wellerdieck, C., Oles, M., Pott, L., Korsching, S., Gisselmann, G. and Hatt, H. (1997). Functional expression of odorant receptors of the zebrafish Danio rerio and the nematode C. elegans in HEK293 cells. Chem. Senses22, 467–76.
  60. Wess, J. (1997). G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J.11, 346–54. (10.1096/fasebj.11.5.9141501)
  61. Wess, J. (1998). Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther.80, 231–264. (10.1016/S0163-7258(98)00030-8)
  62. Wetzel, C. H., Oles, M., Wellerdieck, C., Kuczkowiak, M., Gisselmann, G. and Hatt, H. (1999). Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus laevis oocytes. J. Neurosci.19, 7426–7433. (10.1523/JNEUROSCI.19-17-07426.1999)
  63. Zhao, H., Ivic, L., Otaki, J. M., Hashimoto, M., Mikoshiba, K. and Firestein, S. (1998). Functional expression of a mammalian odorant receptor. Science279, 237–242. (10.1126/science.279.5348.237)
Dates
Type When
Created 4 years, 4 months ago (April 23, 2021, 7:43 p.m.)
Deposited 1 year, 10 months ago (Nov. 2, 2023, 1:19 p.m.)
Indexed 1 year, 9 months ago (Nov. 21, 2023, 12:31 a.m.)
Issued 24 years ago (Sept. 1, 2001)
Published 24 years ago (Sept. 1, 2001)
Published Print 24 years ago (Sept. 1, 2001)
Funders 0

None

@article{Mezler_2001, title={Characteristic features and ligand specificity of the two olfactory receptor classes fromXenopus laevis}, volume={204}, ISSN={0022-0949}, url={http://dx.doi.org/10.1242/jeb.204.17.2987}, DOI={10.1242/jeb.204.17.2987}, number={17}, journal={Journal of Experimental Biology}, publisher={The Company of Biologists}, author={Mezler, Mario and Fleischer, Jörg and Breer, Heinz}, year={2001}, month=sep, pages={2987–2997} }