Crossref journal-article
The Company of Biologists
Journal of Experimental Biology (237)
Abstract

SUMMARY The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently, biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking system that estimates the posture of fish. Our current approach assumes planar motion of the fish, given image sequences taken from a top view. An accurate geometric fish model is automatically designed and fit to the images at each time frame. Our approach works across a range of fish shapes and sizes and is therefore well suited for studying the ontogeny of fish swimming, while also being robust to common environmental occlusions. Our current analysis focuses on measuring the influence of vertebra development on the swimming capabilities of zebrafish. We examine wild-type zebrafish and mutants with stiff vertebrae (stocksteif) and quantify their body kinematics as a function of their development from larvae to adult (mutants made available by the Hubrecht laboratory, The Netherlands). By tracking the fish, we are able to measure the curvature and net acceleration along the body that result from the fish's body wave. Here, we demonstrate the capabilities of the tracking system for the escape response of wild-type zebrafish and stocksteif mutant zebrafish. The response was filmed with a digital high-speed camera at 1500 frames s–1. Our approach enables biomechanists and ethologists to process much larger datasets than possible at present. Our automated tracking scheme can therefore accelerate insight in the swimming behavior of many species of (developing)fish.

Bibliography

Fontaine, E., Lentink, D., Kranenbarg, S., Müller, U. K., van Leeuwen, J. L., Barr, A. H., & Burdick, J. W. (2008). Automated visual tracking for studying the ontogeny of zebrafish swimming. Journal of Experimental Biology, 211(8), 1305–1316.

Authors 7
  1. Ebraheem Fontaine (first)
  2. David Lentink (additional)
  3. Sander Kranenbarg (additional)
  4. Ulrike K. Müller (additional)
  5. Johan L. van Leeuwen (additional)
  6. Alan H. Barr (additional)
  7. Joel W. Burdick (additional)
References 38 Referenced 93
  1. Bang, P. I., Yelick, P. C., Malicki, J. J. and Sewell, W. F.(2002). High-throughput behavioral screening method for detecting auditory response defects in zebrafish. J. Neurosci. Methods118,177-187. (10.1016/S0165-0270(02)00118-8)
  2. Batty, R. (1984). Development of swimming movements and musculature of larval herring (Clupea harengus). J. Exp. Biol.110,217-229. (10.1242/jeb.110.1.217)
  3. Blake, A. and Isard, M. (1998). Active Contours. London: Springer. (10.1007/978-1-4471-1555-7)
  4. Blaser, R. and Gerlai, R. (2006). Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav. Res. Methods38,456-469. (10.3758/BF03192800)
  5. Budick, S. and O'Malley, D. (2000). Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J. Exp. Biol.203,2565-2579. (10.1242/jeb.203.17.2565)
  6. Burgess, H. A. and Granato, M. (2007). Modulation of locomotor activity in larval zebrafish during light adaptation. J. Exp. Biol.210,2526-2539. (10.1242/jeb.003939)
  7. Cheng, J. and Pedley, T. (1998). A continuous dynamic beam model for swimming fish. Philos. Trans. R. Soc. Lond. B Biol. Sci.353,981-997. (10.1098/rstb.1998.0262)
  8. Cronin, C. J., Mendel, J. E., Muhktar, S., Kim, Y. M., Stirbl,R. C., Bruck, J. and Sternberg, P. W. (2005). An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet.6,5. (10.1186/1471-2156-6-5)
  9. Domenici, P. and Blake, R. (1997). The kinematics and performance of fish fast-start swimming. J. Exp. Biol.200,1165-1178. (10.1242/jeb.200.8.1165)
  10. Doucet, A., de Freitas, N. and Gordon, N.(2001). Sequential Monte-Carlo Methods in Practice. New York: Springer-Verlag. (10.1007/978-1-4757-3437-9)
  11. Fontaine, E., Burdick, J. W. and Barr, A.(2006). Automated tracking of multiple C. elegans. In Engineering in Medicine and Biology Society, 28th Annual International Conference of the IEEE, pp.3716-3719. doi:10.1109/IEMBS.2006.260657. (10.1109/IEMBS.2006.260657)
  12. Fry, S., Sayaman, R. and Dickinson, M. (2003). The aerodynamics of free-flight maneuvers in Drosophila.Science300,495-498. (10.1126/science.1081944)
  13. Fuiman, L. and Webb, P. (1988). Ontogeny of routine swimming activity and performance in Zebra danios (Teleostei,Cyprinidae). Anim. Behav.36,250-261. (10.1016/S0003-3472(88)80268-9)
  14. Full, R. and Tu, M. (1991). Mechanics of rapid running insect-2-legged, 4-legged and 6-legged locomotion. J. Exp. Biol.156,215-231. (10.1242/jeb.156.1.215)
  15. Geng, W., Cosman, P., Berry, C. C., Feng, Z. and Schafer, W. R. (2004). Automatic tracking, feature extraction and classification of C. elegans phenotypes. IEEE Trans. Biomed. Eng.51,1811-1820. (10.1109/TBME.2004.831532)
  16. Gray, J. (1933). Studies in animal locomotion. I. The movement of fish with special reference to the eel. J. Exp. Biol.10,88-104.
  17. Hamarneh, G. and McInerney, T. (2001). Controlled shape deformations via medial profiles. In Vision Interface, pp. 252-258.
  18. Harper, D. G. and Blake, R. W. (1989). On the error involved in high-speed film when used to evaluate maximum accelerations of fish. Can. J. Zool.67,1929-1936. (10.1139/z89-276)
  19. Hedrick, T., Usherwood, J. and Biewener, A.(2004). Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus). J. Exp. Biol.207,1689-1702. (10.1242/jeb.00933)
  20. Ito, K. and Xiong, K. (2000). Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Contr.45,910-927. (10.1109/9.855552)
  21. McElligott, M. B. and O'Malley, D. M. (2005). Prey tracking by larval zebrafish: axial kinematics and visual control. Brain Behav. Evol.66,177-196. (10.1159/000087158)
  22. McHenry, M. (2001). Mechanisms of helical swimming: asymmetries in the morphology, movement and mechanics of larvae of the ascidian Distaplia occidentalis.J. Exp. Biol.204,2959-2973. (10.1242/jeb.204.17.2959)
  23. McHenry, M. J., Pell, C. A. and Long, J. H., Jr(1995). Mechanical control of swimming speed: stiffness and axial wave form in undulating fish models. J. Exp. Biol.198,2293-2305. (10.1242/jeb.198.11.2293)
  24. Müller, U. K. and van Leeuwen, J. L.(2004). Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development. J. Exp. Biol.207,853-868. (10.1242/jeb.00821)
  25. Muybridge, E. (1887). Animal Locomotion. Philadelphia: University of Pennsylvania.
  26. Nörgaard, M., Poulsen, N. K. and Ravn, O.(2000). New developments in state estimation for nonlinear systems. Automatica36,1627-1638. (10.1016/S0005-1098(00)00089-3)
  27. Park, K. J., Rosen, M. and Hedenstrom, A.(2001). Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel. J. Exp. Biol.204,2741-2750. (10.1242/jeb.204.15.2741)
  28. Pfau, T., Witte, T. H. and Wilson, A. M.(2005). A method for deriving displacement data during cyclical movement using an inertial sensor. J. Exp. Biol.208,2503-2514. (10.1242/jeb.01658)
  29. Roussel, N., Morton, C., Finger, F. and Roysam, B.(2007). A computational model for C. Elegans locomotory behavior: application to multiworm tracking. IEEE Trans. Biomed. Eng.54,1786-1797.
  30. Sibley, G., Sukhatme, G. and Matthies, L.(2006). The iterated sigma point Kalman filter with applications to long range stereo. Robotics Science and Systems, http://www.roboticsproceedings.org/rss02/p34.pdf.
  31. Standen, E. and Lauder, G. (2005). Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus:three-dimensional kinematics during propulsion and maneuvering. J. Exp. Biol.208,2753-2763. (10.1242/jeb.01706)
  32. Thorsen, D. H., Cassidy, J. J. and Hale, M. E.(2004). Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control. J. Exp. Biol.207,4175-4183. (10.1242/jeb.01285)
  33. Tytell, E. D. and Lauder, G. V. (2002). The C-start escape response of Polypterus senegalus: bilateral muscle activity and variation during stage 1 and 2. J. Exp. Biol.205,2591-2603. (10.1242/jeb.205.17.2591)
  34. van der Merwe, R. and Wan, E. (2003). Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. Proceedings of the Workshop on Advances in Machine Learning, Montreal, Canada.
  35. Wainwright, S. (1983). To bend a fish. In Fish Biomechanics (ed. P. Webb and D. Weihs), pp.68-91. New York: Praeger.
  36. Walker, J. A. (1998). Estimating velocities and accelerations of animal locomotion: a simulation experiment comparing numerical differentiation algorithms. J. Exp. Biol.201,981-995. (10.1242/jeb.201.7.981)
  37. Weihs, D. (1973). The mechanism of rapid starting of slender fish. Biorheology10,343-350. (10.3233/BIR-1973-10308)
  38. Willmott, A. and Ellington, C. (1997). Measuring the angle of attack of beating insect wings: robust three-dimensional reconstruction from two-dimensional images. J. Exp. Biol.200,2693-2704. (10.1242/jeb.200.21.2693)
Dates
Type When
Created 17 years, 5 months ago (March 29, 2008, 3:04 a.m.)
Deposited 4 years, 4 months ago (April 25, 2021, 9:34 a.m.)
Indexed 1 month, 2 weeks ago (July 22, 2025, 7:14 a.m.)
Issued 17 years, 4 months ago (April 15, 2008)
Published 17 years, 4 months ago (April 15, 2008)
Published Print 17 years, 4 months ago (April 15, 2008)
Funders 0

None

@article{Fontaine_2008, title={Automated visual tracking for studying the ontogeny of zebrafish swimming}, volume={211}, ISSN={0022-0949}, url={http://dx.doi.org/10.1242/jeb.010272}, DOI={10.1242/jeb.010272}, number={8}, journal={Journal of Experimental Biology}, publisher={The Company of Biologists}, author={Fontaine, Ebraheem and Lentink, David and Kranenbarg, Sander and Müller, Ulrike K. and van Leeuwen, Johan L. and Barr, Alan H. and Burdick, Joel W.}, year={2008}, month=apr, pages={1305–1316} }