Crossref journal-article
The Company of Biologists
Journal of Cell Science (237)
Abstract

Human umbilical vein endothelial cells were stained with FITC-labeled anti-β1 integrin antibody and plated on a glass cover slip to elucidate the mechanism of integrin clustering during focal contact formation. The process of integrin clustering was observed by time-lapse total-internal-reflection fluorescence microscopy, which can selectively visualize the labeled integrins at the basal surface of living cells. The clustering of integrins at focal contacts started at 1 hour after plating and individual clusters kept growing for ∼6 hours. Most integrin clusters (∼80%) elongated towards the cell center or along the cell margin at a rate of 0.29±0.24 μm minute−1. Photobleaching and recovery experiments with evanescent illumination revealed that the integrins at the extending tip of the clusters were supplied from the intracellular space. Simultaneous time-lapse imaging of exocytosis of integrin-containing vesicles and elongating focal contacts showed that most exocytosis occurred at or near the focal contacts followed by their elongation. Double staining of F-actins and integrins demonstrated that stress fibers were located near the integrin clusters and that intracellular punctate integrins were associated with these stress fibers. These results suggest that the clustering of integrins is mediated by actin-fiber-dependent translocation of integrins to the extending tip of focal contacts.

Bibliography

Kawakami, K., Tatsumi, H., & Sokabe, M. (2001). Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy. Journal of Cell Science, 114(17), 3125–3135.

Authors 3
  1. Keisuke Kawakami (first)
  2. Hitoshi Tatsumi (additional)
  3. Masahiro Sokabe (additional)
References 47 Referenced 54
  1. Altankov, G. and Grinnell, F. (1995). Fibronectin receptor internalization and AP-2 complex reorganization in potassium-depleted fibroblasts. Exp. Cell Res.216, 299-309. (10.1006/excr.1995.1038)
  2. Bi, G. Q., Morris, R. L., Liao G., Alderton, J. M. and Scholey, J. M. (1997). Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol.138, 999-1008. (10.1083/jcb.138.5.999)
  3. Bloom, G. S. (1992). Motor proteins for cytoplasmic microtubules. Curr. Opin. Cell Biol.4, 66-73. (10.1016/0955-0674(92)90060-P)
  4. Bretscher, M. S. (1983). Distribution of receptors for transferrin and low density lipoprotein on the surface of giant HeLa cells. Proc. Natl. Acad. Sci. USA.80, 454-458. (10.1073/pnas.80.2.454)
  5. Bretscher, M. S. (1989). Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J.8, 1341-1348. (10.1002/j.1460-2075.1989.tb03514.x)
  6. Bretscher, M. S. and Thomson, J. N. (1983). Distribution of ferritin receptors and coated pits on giant HeLa cells. EMBO J.2, 599-603. (10.1002/j.1460-2075.1983.tb01469.x)
  7. Burmeister, J. S., Truskey, G. A. and Reichert, W. M. (1994). Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell/substrate contacts. J. Microsc.173, 39-51. (10.1111/j.1365-2818.1994.tb03426.x)
  8. Choquet, D., Felsenfeld, D. P. and Sheetz, M. P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell88, 39-48. (10.1016/S0092-8674(00)81856-5)
  9. Cramer, L. P. and Mitchison, T. J. (1995). Myosin is involved in postmitotic cell spreading. J. Cell Biol.131, 179-189. (10.1083/jcb.131.1.179)
  10. Drake, C. J., Davis, L. A. and Little C. D. (1992). Antibodies to β1-integrins cause alterations of aortic vasculogenesis, in vivo. Dev. Dyn.193, 83-91. (10.1002/aja.1001930111)
  11. Ekblom, P., Thesleff, I., Lehto, V. P. and Virtanen, I. (1983). Distribution of the transferrin receptor in normal human fibroblasts and fibrosarcoma cells. Int. J. Cancer31, 111-117. (10.1002/ijc.2910310118)
  12. Espreafico, E. M., Cheney, R. E., Matteoli, M., Nascimento, A. A. C., De Camilli, P. V., Larson, R. E. and Mooseker, M. S. (1992). Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J. Cell Biol.119, 1541-1557. (10.1083/jcb.119.6.1541)
  13. Evans, L. L., Hammer, J. and Bridgman, P. C. (1997). Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J. Cell Sci.110, 439-449. (10.1242/jcs.110.4.439)
  14. Evans, L. L., Lee, A. J., Bridgman, P. C. and Mooseker, M. S. (1998). Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J. Cell Sci.111, 2055-2066. (10.1242/jcs.111.14.2055)
  15. Fath, K. R. and Burgess, D. R. (1993). Golgi-derived vesicles form developing epithelial cells bind actin filaments and possess myosin-I as a cytoplasmically oriented peripheral membrane protein. J. Cell Biol.120, 117-127. (10.1083/jcb.120.1.117)
  16. Folsom, T. D. and Sakaguchi, D. S. (1997). Characterization of focal adhesion assembly in XR1 glial cells. Glia20, 348-364. (10.1002/(SICI)1098-1136(199708)20:4<348::AID-GLIA7>3.0.CO;2-1)
  17. Folsom, T. D. and Sakaguchi, D. S. (1999). Disruption of actin-myosin interactions results in the inhibition of focal adhesion assembly in Xenopus XR1 glial cells. Glia26, 245-259. (10.1002/(SICI)1098-1136(199905)26:3<245::AID-GLIA6>3.0.CO;2-V)
  18. Grimbrone, M. A., Jr (1976). Culture of vascular endothelium. In Progress in Hemostasis and Thrombosis. (ed. T. Spaet), pp. 1-28. New York: Grune and Stratton.
  19. Henkel, A. W. and Betz, W. J. (1995). Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J. Neurosci.15, 8246-8258. (10.1523/JNEUROSCI.15-12-08246.1995)
  20. Heuser, J. (1980). Three-dimensional visualization of coater vesicle formation in fibroblasts. J. Cell Biol.84, 560-583. (10.1083/jcb.84.3.560)
  21. Hirokawa, N. (1998). Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science279, 519-526. (10.1126/science.279.5350.519)
  22. Kumar, C. C. (1998). Signaling by integrin receptors. Oncogene17, 1365-1373. (10.1038/sj.onc.1202172)
  23. LaFlamme, S. E., Akiyama, S. K. and Yamada, K. M. (1992). Regulation of fibronectin receptor distribution. J. Cell Biol.117, 437-447. (10.1083/jcb.117.2.437)
  24. Lawson, M. A. and Maxfield, F. R. (1995). Ca2+- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature377, 75-79. (10.1038/377075a0)
  25. Luscinskas, F. W. and Lawler, J. (1994). Integrins as dynamic regulators of vascular function. FASEB J.8, 929-938. (10.1096/fasebj.8.12.7522194)
  26. Mallavarapu, A. and Mitchison, T. (1999). Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol.146, 1097-1106. (10.1083/jcb.146.5.1097)
  27. Mermall, V., Post, P. L. and Mooseker, M. S. ( 1998). Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science279, 527-533. (10.1126/science.279.5350.527)
  28. Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K. and Yamada, K. M. (1995). Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol.131, 791-805. (10.1083/jcb.131.3.791)
  29. Nakata, T., Terada, S. and Hirokawa, N. (1998). Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol.140, 659-674. (10.1083/jcb.140.3.659)
  30. Oancea, E., Teruel, M. N., Quest, A. F. G. and Meyer, T. (1998). Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol.140, 485-498. (10.1083/jcb.140.3.485)
  31. Orci, L., Glick, B. S. and Rothman, J. E. (1986). A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell46, 171-184. (10.1016/0092-8674(86)90734-8)
  32. Palecek, S. P., Schmidt, C. E., Lauffenburger, D. A. and Horwitz, A. F. (1996). Integrin dynamics on the tail region of migrating fibroblasts. J. Cell Sci.109, 941-952. (10.1242/jcs.109.5.941)
  33. Pankov, R., Cukierman, E., Katz, B. Z., Matsumoto, K., Lin, D. C., Lin, S., Hahn, C. and Yamada, K. M. (2000). Integrin dynamics and matrix assembly: tensin-dependent translocation of α5β1 integrins promotes early fibronectin fibrillogenesis. J. Cell Biol.148, 1075-1090. (10.1083/jcb.148.5.1075)
  34. Regen, C. M. and Horwitz, A. F. (1992). Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol.119, 1347-1359. (10.1083/jcb.119.5.1347)
  35. Ruoslahti, E. (1996). RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol.12, 697-715. (10.1146/annurev.cellbio.12.1.697)
  36. Ruoslahti, E. and Engvall, E. (1997). Integrins and vascular extracellular matrix assembly. J. Clin. Invest.99, 1149-1152. (10.1172/JCI119269)
  37. Saitoh, M., Ishikawa, T., Matsushima, S., Naka, M. and Hidaka, H. (1987). Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J. Biol. Chem.262, 7796-7801. (10.1016/S0021-9258(18)47638-7)
  38. Schwartz, M., Axelrod, D., Feldman, E. L. and Agranoff, B. W. (1980). Histological localization of binding sites of α-bungarotoxin and of antibodies specific to acetylcholine receptor in goldfish optic nerve and tectum. Brain Res.194, 171-180. (10.1016/0006-8993(80)91326-8)
  39. Sczekan, M. M. and Juliano, R. L. (1990). Internalization of the fibronectin receptor is a constitutive process. J. Cell Physiol.142, 574-580. (10.1002/jcp.1041420317)
  40. Sheets, E. D., Simson, R. and Jacobson, K. (1995). New insights into membrane dynamics from the analysis of cell surface interactions by physical methods. Curr. Opin. Cell Biol.7, 707-714. (10.1016/0955-0674(95)80113-8)
  41. Smilenov, L. B., Mikhailov, A., Pelham, R. J., Jr, Marcantonio, E. E. and Gundersen, G. G. (1999). Focal adhesion motility revealed in stationary fibroblasts. Science286, 1172-1174. (10.1126/science.286.5442.1172)
  42. Stossel, T. P. (1993). On the crawling of animal cells. Science260,1086-1094. (10.1126/science.8493552)
  43. Tatsumi, H., Katayama, Y. and Sokabe, M. (1999). Attachment of growth cones on substrate observed by multi-mode light microscopy. Neurosci. Res.35, 197-206. (10.1016/S0168-0102(99)00085-1)
  44. Tawil, N., Wilson, P. and Carbonetto, S. (1993). Integrins in point contacts mediate cell spreading: factors that regulate integrin accumulation in point contacts vs. focal contacts. J. Cell Biol.120, 261-271. (10.1083/jcb.120.1.261)
  45. Vale, R. D., Reese, T. S. and Sheetz, M. P. (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell.42, 39-50. (10.1016/S0092-8674(85)80099-4)
  46. Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K. M., Katz, B. Z., Lin, S., Lin, D. C., Bershadsky, A., Kam, Z. et al. (2000). Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat. Cell Biol.2, 191-196. (10.1038/35008607)
  47. Zhu, S., Yu, A. W., Hawley, D. and Roy, R. (1986). Frustrated total internal reflection: a demonstration and review. Am. J. Phys.54, 601-606 (10.1119/1.14514)
Dates
Type When
Created 4 years, 4 months ago (April 25, 2021, 8:22 p.m.)
Deposited 4 years, 4 months ago (April 25, 2021, 8:23 p.m.)
Indexed 3 months, 4 weeks ago (April 28, 2025, 12:09 p.m.)
Issued 23 years, 11 months ago (Sept. 1, 2001)
Published 23 years, 11 months ago (Sept. 1, 2001)
Published Print 23 years, 11 months ago (Sept. 1, 2001)
Funders 0

None

@article{Kawakami_2001, title={Dynamics of integrin clustering at focal contacts of endothelial cells studied by multimode imaging microscopy}, volume={114}, ISSN={0021-9533}, url={http://dx.doi.org/10.1242/jcs.114.17.3125}, DOI={10.1242/jcs.114.17.3125}, number={17}, journal={Journal of Cell Science}, publisher={The Company of Biologists}, author={Kawakami, Keisuke and Tatsumi, Hitoshi and Sokabe, Masahiro}, year={2001}, month=sep, pages={3125–3135} }