Crossref journal-article
The Company of Biologists
Journal of Cell Science (237)
Abstract

In mammalian heterochromatin, cytosine bases of CpG dinucleotides are symmetrically modified by methylation. Patterns of CpG methylation are maintained by the action of Dnmt1, the mammalian maintenance cytosine methyltransferase enzyme. We genetically manipulated the levels of CpG methylation and found that extensive chromatin alterations occur in pericentric heterochromatin. Homozygous mutations in Dnmt1 cause severe hypomethylation of pericentric heterochromatin and concomitant chromatin reorganization involving the histone variant macroH2A. Demethylation-induced alterations in macroH2A localization occur in both interphase and mitotic embryonic stem (ES) cells. Heterochromatin protein 1 (HP1) marks interphase pericentric heterochromatin (chromocenters). MacroH2A immunostaining in Dnmt1–/– cells becomes coincident with chromocenters detected by HP1 content. MacroH2A, but not HP1, is enriched in nuclease-resistant chromatin fractions extracted from Dnmt1–/– cells. Normal localization of macroH2A was restored upon reintroduction of a Dnmt1 transgene into Dnmt1–/– cells. MacroH2A localization was also affected in T-antigen-transformed fibroblasts subjected to the conditional mutation of Dnmt1. Together, these results suggest that pericentric heterochromatin can be maintained in the absence of CpG methylation, but in a significantly altered configuration.

Bibliography

Ma, Y., Jacobs, S. B., Jackson-Grusby, L., Mastrangelo, M.-A., Torres-Betancourt, J. A., Jaenisch, R., & Rasmussen, T. P. (2005). DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. Journal of Cell Science, 118(8), 1607–1616.

Authors 7
  1. Yinghong Ma (first)
  2. Stephanie B. Jacobs (additional)
  3. Laurie Jackson-Grusby (additional)
  4. Mary-Ann Mastrangelo (additional)
  5. José A. Torres-Betancourt (additional)
  6. Rudolf Jaenisch (additional)
  7. Theodore P. Rasmussen (additional)
References 33 Referenced 44
  1. Allen, M. D., Buckle, A. M., Cordell, S. C., Lowe, J. and Bycroft, M. (2003). The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol.330, 503-511. (10.1016/S0022-2836(03)00473-X)
  2. Angelov, D., Molla, A., Perche, P. Y., Hans, F., Cote, J., Khochbin, S., Bouvet, P. and Dimitrov, S. (2003). The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol. Cell11, 1033-1041. (10.1016/S1097-2765(03)00100-X)
  3. Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C. and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120-124. (10.1038/35065138)
  4. Bernardino, J., Lamoliatte, E., Lombard, M., Niveleau, A., Malfoy, B., Dutrillaux, B. and Bourgeois, C. A. (1996). DNA methylation of the X chromosomes of the human female: an in situ semi-quantitative analysis. Chromosoma104, 528-535. (10.1007/BF00352117)
  5. Biniszkiewicz, D., Gribnau, J., Ramsahoye, B., Gaudet, F., Eggan, K., Humpherys, D., Mastrangelo, M. A., Jun, Z., Walter, J. and Jaenisch, R. (2002). Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol. Cell Biol.22, 2124-2135. (10.1128/MCB.22.7.2124-2135.2002)
  6. Brenner, S., Pepper, D., Berns, M. W., Tan, E. and Brinkley, B. R. (1981). Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol.91, 95-102. (10.1083/jcb.91.1.95)
  7. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S. and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science298, 1039-1043. (10.1126/science.1076997)
  8. Costanzi, C. and Pehrson, J. R. (1998). Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature393, 599-601. (10.1038/31275)
  9. Costanzi, C., Stein, P., Worrad, D. M., Schultz, R. M. and Pehrson, J. R. (2000). Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development127, 2283-2289. (10.1242/dev.127.11.2283)
  10. Frorath, B., Abney, C. C., Berthold, H., Scanarini, M. and Northemann, W. (1992). Production of recombinant rat interleukin-6 in Escherichia coli using a novel highly efficient expression vector pGEX-3T. Biotechniques12, 558-563.
  11. Hoyer-Fender, S., Czirr, E., Radde, R., Turner, J. M., Mahadevaiah, S. K., Pehrson, J. R. and Burgoyne, P. S. (2004). Localisation of histone macroH2A1.2 to the XY-body is not a response to the presence of asynapsed chromosome axes. J. Cell Sci.117, 189-198.
  12. Jackson-Grusby, L., Beard, C., Possemato, R., Tudor, M., Fambrough, D., Csankovszki, G., Dausman, J., Lee, P., Wilson, C., Lander, E. et al. (2001). Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet.27, 31-39. (10.1038/83730)
  13. Jacobs, S. A. and Khorasanizadeh, S. (2002). Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science295, 2080-2083. (10.1126/science.1069473)
  14. Jacobs, S. A., Taverna, S. D., Zhang, Y., Briggs, S. D., Li, J., Eissenberg, J. C., Allis, C. D. and Khorasanizadeh, S. (2001). Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J.20, 5232-5241. (10.1093/emboj/20.18.5232)
  15. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116-120. (10.1038/35065132)
  16. Ladurner, A. G. (2003). Inactivating chromosomes: a macro domain that minimizes transcription. Mol. Cell12, 1-3.
  17. Lei, H., Oh, S. P., Okano, M., Juttermann, R., Goss, K. A., Jaenisch, R. and Li, E. (1996). De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development122, 3195-3205. (10.1242/dev.122.10.3195)
  18. Leonhardt, H., Page, A. W., Weier, H. U. and Bestor, T. H. (1992). A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell71, 865-873. (10.1016/0092-8674(92)90561-P)
  19. Li, E., Bestor, T. H. and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915-926. (10.1016/0092-8674(92)90611-F)
  20. Li, E., Beard, C., Forster, A. C., Bestor, T. H. and Jaenisch, R. (1993). DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harb. Symp. Quant. Biol.58, 297-305. (10.1101/SQB.1993.058.01.035)
  21. Maison, C., Bailly, D., Peters, A. H., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T. and Almouzni, G. (2002). Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet.30, 329-334. (10.1038/ng843)
  22. Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. and Margolis, R. L. (1987). A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol.104, 805-815. (10.1083/jcb.104.4.805)
  23. Pehrson, J. R. and Fried, V. A. (1992). MacroH2A, a core histone containing a large nonhistone region. Science257, 1398-1400. (10.1126/science.1529340)
  24. Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schofer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A. et al. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell107, 323-337. (10.1016/S0092-8674(01)00542-6)
  25. Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B. and Zhang, Y. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131-135. (10.1126/science.1084274)
  26. Pradhan, S., Bacolla, A., Wells, R. D. and Roberts, R. J. (1999). Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem.274, 33002-33010. (10.1074/jbc.274.46.33002)
  27. Rasmussen, T. P., Huang, T., Mastrangelo, M. A., Loring, J., Panning, B. and Jaenisch, R. (1999). Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res.27, 3685-3689. (10.1093/nar/27.18.3685)
  28. Rasmussen, T. P., Mastrangelo, M. A., Eden, A., Pehrson, J. R. and Jaenisch, R. (2000). Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J. Cell Biol.150, 1189-1198. (10.1083/jcb.150.5.1189)
  29. Rea, S., Eisenhaber, F., O'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C. P., Allis, C. D. et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593-599. (10.1038/35020506)
  30. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., Schreiber, S. L., Mellor, J. and Kouzarides, T. (2002). Active genes are tri-methylated at K4 of histone H3. Nature419, 407-411. (10.1038/nature01080)
  31. Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T. B., Webster, Z., Peters, A. H., Jenuwein, T., Otte, A. P. and Brockdorff, N. (2003). Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell4, 481-495. (10.1016/S1534-5807(03)00068-6)
  32. Thorne, A. W., Cary, P. D. and Crane-Robinson, C. (1998). Extraction and separation of core histones and non-histone chromosomal proteins. In Chromatin: A Practical Approach (ed. H. Gould), pp. 35-57. Oxford, UK: Oxford University Press. (10.1093/oso/9780199635993.003.0002)
  33. Viegas-Pequignot, E., Dutrillaux, B. and Thomas, G. (1988). Inactive X chromosome has the highest concentration of unmethylated Hha I sites. Proc. Natl. Acad. Sci. USA85, 7657-7660. (10.1073/pnas.85.20.7657)
Dates
Type When
Created 20 years, 5 months ago (March 22, 2005, 8:14 p.m.)
Deposited 1 year, 7 months ago (Jan. 23, 2024, 11:41 p.m.)
Indexed 3 weeks, 4 days ago (Aug. 6, 2025, 8:36 a.m.)
Issued 20 years, 4 months ago (April 15, 2005)
Published 20 years, 4 months ago (April 15, 2005)
Published Print 20 years, 4 months ago (April 15, 2005)
Funders 0

None

@article{Ma_2005, title={DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A}, volume={118}, ISSN={0021-9533}, url={http://dx.doi.org/10.1242/jcs.02291}, DOI={10.1242/jcs.02291}, number={8}, journal={Journal of Cell Science}, publisher={The Company of Biologists}, author={Ma, Yinghong and Jacobs, Stephanie B. and Jackson-Grusby, Laurie and Mastrangelo, Mary-Ann and Torres-Betancourt, José A. and Jaenisch, Rudolf and Rasmussen, Theodore P.}, year={2005}, month=apr, pages={1607–1616} }