Crossref journal-article
The Company of Biologists
Development (237)
Abstract

Group B Sox-domain proteins encompass a class of conserved DNA-binding proteins expressed from the earliest stages of metazoan CNS development. In all higher organisms studied to date, related Group B Sox proteins are co-expressed in the developing CNS; in vertebrates there are three (Sox1, Sox2 and Sox3) and in Drosophila there are two (SoxNeuro and Dichaete). It has been suggested there may be a degree of functional redundancy in Sox function during CNS development. We describe the CNS phenotype of a null mutation in the Drosophila SoxNeuro gene and provide the first direct evidence for both redundant and differential Sox function during CNS development in Drosophila. In the lateral neuroectoderm, where SoxNeuro is uniquely expressed, SoxNeuro mutants show a loss or reduction of achaete expression as well as a loss of many correctly specified lateral neuroblasts. By contrast, in the medial neuroectoderm, where the expression of SoxNeuro and Dichaete overlaps, the phenotypes of both single mutants are mild. In accordance with an at least partially redundant function in that region, SoxNeuro/Dichaete double mutant embryos show a severe neural hypoplasia throughout the central nervous system, as well as a dramatic loss of achaete expressing proneural clusters and medially derived neuroblasts. However, the finding that Dichaete and SoxN exhibit opposite effects on achaete expression within the intermediate neuroectoderm demonstrates that each protein also has region-specific unique functions during early CNS development in the Drosophila embryo.

Bibliography

Overton, P. M., Meadows, L. A., Urban, J., & Russell, S. (2002). Evidence for differential and redundant function of the Sox genesDichaeteandSoxNduring CNS development inDrosophila. Development, 129(18), 4219–4228.

Authors 4
  1. Paul M. Overton (first)
  2. Lisa A. Meadows (additional)
  3. Joachim Urban (additional)
  4. Steven Russell (additional)
References 50 Referenced 111
  1. Arendt, D. and Nübler-Jung, K. (1999). Comparison of early nerve cord development in insects and vertebrates. Development126, 2309-2325. (10.1242/dev.126.11.2309)
  2. Bhat, K. M. (1999). Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. BioEssays21, 472-485. (10.1002/(SICI)1521-1878(199906)21:6<472::AID-BIES4>3.0.CO;2-W)
  3. Bowles, J., Schepers, G. and Koopman, P. (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol.227, 239-255. (10.1006/dbio.2000.9883)
  4. Brand, A. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development118, 401-415. (10.1242/dev.118.2.401)
  5. Campos-Ortega, J. A. (1993). Early neurogenesis in Drosophila melanogaster. In The Development of Drosophila melanogaster, Vol. 2 (ed. M. Bate and A. Martinez Arias), pp. 1091-1129. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  6. Campos-Ortega, J. A. and Hartenstein, V. (1997). The Embryonic Development of Drosophila melanogaster. Berlin: Springer-Verlag. (10.1007/978-3-662-22489-2)
  7. Campuzano, S., Carramolino, L., Cabrera, C. V., Ruiz-Gomez, M., Villares. R., Boronat. A. and Modolell, J. (1985). Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell40, 327-338. (10.1016/0092-8674(85)90147-3)
  8. Castelli-Gair, J. E., Greig, S., Micklem, G. and Akam, M. E. (1994). Dissecting the temporal requirements for homeotic gene function. Development120, 1983-1995. (10.1242/dev.120.7.1983)
  9. Chitnis, A., Henrique, D., Lewis, J., Ish-Horowicz, D. and Kintner, C. (1995). Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature375, 761-766. (10.1038/375761a0)
  10. Chu, H., Parras, C., White, K. and Jiminez, F. (1998). Formation and specification of ventral neuroblasts is controlled by vnd in Drosophila neurogenesis. Genes Dev. 12, 3613-3624. (10.1101/gad.12.22.3613)
  11. Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norriss, D., Rastan, S., Stevanovic, M., Goodfellow, P. N. and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development. 122, 509-520 (10.1242/dev.122.2.509)
  12. Cremazy, F., Berta, P. and Girard, F. (2000). SoxNeuro, a new Drosophila Sox gene expressed in the developing central nervous system. Mech. Dev.93, 215-219. (10.1016/S0925-4773(00)00268-9)
  13. D’Alessio, M. and Frasch, M. (1996). msh may play a conserved role in dorsoventral patterning of the neuroectoderm and mesoderm. Mech. Dev.58, 217-231. (10.1016/S0925-4773(96)00583-7)
  14. Dailey, L. and Basilico, C. (2001). Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J. Cell Physiol.186, 315-328 (10.1002/1097-4652(2001)9999:9999<000::AID-JCP1046>3.0.CO;2-Y)
  15. Davidson, D. (1995). The function and evolution of Msx genes: pointers and paradoxes. Trends Genet.11, 405-411. (10.1016/S0168-9525(00)89124-6)
  16. De Robertis, E. M. and Sasai, Y. (1996). A common plan for dorsoventral patterning in the Bilateria. Nature380, 37-40. (10.1038/380037a0)
  17. Dittrich, R., Bossing, T., Gould, A. P., Technau, G. M. and Urban, J. (1997). The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein. Development124, 2515-2525. (10.1242/dev.124.13.2515)
  18. FlyBase (2002). The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res.30, 106-108.
  19. Goodman, C. S. and Doe, C. Q. (1993). Embryonic development of the Drosophila CNS. In The Development of Drosophila melanogaster, Vol. 2 (ed. M. Bate and A. Martinez Arias), pp. 1131-1206. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.
  20. Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P. N. and Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature346, 245-250. (10.1038/346245a0)
  21. Harley, V. R., Lovell-Badge, R. and Goodfellow, P. N. (1994). Definition of a consensus DNA binding site for SRY. Nucleic Acids Res.22, 1500-1501. (10.1093/nar/22.8.1500)
  22. Hummel, T., Schimmelpfeng, K. and Klambt, C. (1999). Commisure formation in the embryonic CNS of Drosophila. I. Identification of the required gene functions. Dev. Biol.209, 381-398.
  23. Jimenez, F. and Campos-Ortega, J. A. (1987). Genes in subdivision 1B of the Drosophila melanogaster X-chromosome and their influence on neural development. J. Neurogenet.4, 179-200.
  24. Kamachi, Y., Uchikawa, M. and Kondoh, H. (2000). Pairing SOX off with partners in the regulation of embryonic development. Trends Genet.16, 182-187. (10.1016/S0168-9525(99)01955-1)
  25. Karess, R. E. (1985). P element mediated germ line transformation of Drosophila. In DNA Cloning, Vol. II (ed. D. M. Glover), pp. 121-142. Oxford: IRL Press.
  26. Lee, J. E. (1997). Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol.7, 13-20. (10.1016/S0959-4388(97)80115-8)
  27. Lewis, J. (1996). Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol.6, 3-10. (10.1016/S0959-4388(96)80002-X)
  28. Li, M., Pevny, L., Lovell-Badge, R. and Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol.8, 971-974. (10.1016/S0960-9822(98)70399-9)
  29. Lindsley, D. L. and Zimm, G. G. (1992). The Genome of Drosophila melanogaster. San Diego: Academic Press.
  30. Ma, Y., Certel, K., Gao, Y., Niemitz, E., Mosher, J., Mukherjee, A., Mutsuddi, M., Huseinovic, N., Crews, S. T., Johnson, W. A. and Nambu, J. R. (2000). Functional Interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene. J. Neurosci. 20, 4596-4605. (10.1523/JNEUROSCI.20-12-04596.2000)
  31. Mizuseki, K. Kishi, M., Shiota, K., Nakansihi, S. and Sasai, Y. (1998a). SoxD: an essential mediator of induction of anterior neural tissues in Xenopus. Neuron21, 77-85. (10.1016/S0896-6273(00)80516-4)
  32. Mizuseki, K. Kishi, M., Matsui, M., Nakansihi, S. and Sasai, Y. (1998b). Xenopus Zic-related-1 and Sox-2, two factors induced by Chordin have distinct activities in the initiation of neural induction. Development125, 579-587. (10.1242/dev.125.4.579)
  33. Nambu, P. A. and Nambu, J. R. (1996). The Drosophila fish-hook gene encodes an HMG domain protein essential for segmentation and CNS development. Development122, 3467-3475. (10.1242/dev.122.11.3467)
  34. Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. and Episkopou, V. (1998). Sox1 directly regulates the g-crystallin genes and is essential for lens development in mice. Genes Dev.12, 776-781. (10.1101/gad.12.6.776)
  35. Patel, N. H. (1994). Imaginal neuronal subsets and other cell types in whole mount Drosophila embryos and larvae using antibody probes. In Drosophila melanogaster: Practical Uses in Cell Biology, Vol. 44 (ed. L. Goldstein. and. E. Fyrbeg), pp. 445-487. New York: Academic Press.
  36. Pevny, L. H. and Lovell-Badge, R. (1997). Sox genes find their feet. Curr. Opin. Genet. Dev.7, 338-344. (10.1016/S0959-437X(97)80147-5)
  37. Pevny, L. H., Sockanathan, S., Placzek, M. and Lovell-Badge, R. (1998). A role for SOX1 in neural determination. Development125, 1967-1978. (10.1242/dev.125.10.1967)
  38. Rex, M., Orme, A., Uwanogho, D., Tointon, K., Wigmore, P. M., Sharpe, P. T. and Scotting, P. J. (1997). Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev. Dyn.209, 323-332. (10.1002/(SICI)1097-0177(199707)209:3<323::AID-AJA7>3.0.CO;2-K)
  39. Russell, S. R. H., Sanchez-Soriano, N., Wright, C. R. and Ashburner, M. (1996). The Dichaete gene of Drosophila melanogaster encodes a Sox-domain protein required for embryonic segmentation. Development122, 3669-3676. (10.1242/dev.122.11.3669)
  40. Sanchez-Soriano, N. and Russell, S. (1998). The Drosophila Sox-domain protein Dichaete is required for the development of the central nervous system midline. Development125, 3989-3996.
  41. Sanchez-Soriano, N. and Russell, S. (2000). Regulatory mutations of the Drosophila Sox gene Dichaete reveal new functions in embryonic brain and hindgut development. Dev. Biol.220, 307-321. (10.1006/dbio.2000.9648)
  42. Skeath, J. B. (1999). At the nexus between pattern formation and cell-type specification: the generation of individual neuroblast fates in the Drosophila embryonic central nervous system. BioEssays21, 922-931. (10.1002/(SICI)1521-1878(199911)21:11<922::AID-BIES4>3.0.CO;2-T)
  43. Udolph, G., Luer, K., Bossing, T. and Technau, G. M. (1995). Commitment of CNS progenitors along the dorsoventral axis of Drosophila neuroectoderm. Science269, 1278-1281. (10.1126/science.7652576)
  44. Uwanogho, D., Rex, M., Cartwright, E. J., Pearl, G., Healy, C., Scotting, P. J. and Sharpe, P. T. (1995). Embryonic expression of the Chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev.49, 3847-3854. (10.1016/0925-4773(94)00299-3)
  45. Wenger, M. (1999). From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res.27, 1409-1420.
  46. Weiss, J. B., von Ohlen, T., Mellerick, D. M., Dressler, G., Doe, C. D. and Scott, M. P. (1998). Dorsoventral patterning in the Drosophila central nervous system: the intermediate neuroblasts defective homeobox gene specifies intermediate column identity. Genes Dev.12, 3591-3602. (10.1101/gad.12.22.3591)
  47. Wood, H. B. and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev.86, 197-201. (10.1016/S0925-4773(99)00116-1)
  48. Wustmann, G., Szidonya, J., Taubert, H. and Reuter, G. (1989). The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol. Gen. Genet.217, 520-527. (10.1007/BF02464926)
  49. Yuan, H., Corbi, N., Basilico, C. and Dailey, L. (1995). Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev.9, 2635-2645. (10.1101/gad.9.21.2635)
  50. Zhao, G. and Skeath, J. B. (2002). The sox-domain containing gene Dichaete/fish-hook acts in concert with vnd and ind to regulate cell fate in the neuroectoderm. Development129, 1165-1174.
Dates
Type When
Created 4 years, 4 months ago (April 25, 2021, 9:18 a.m.)
Deposited 2 years, 8 months ago (Dec. 25, 2022, 6:27 a.m.)
Indexed 4 months, 3 weeks ago (April 10, 2025, 7:14 a.m.)
Issued 22 years, 11 months ago (Sept. 15, 2002)
Published 22 years, 11 months ago (Sept. 15, 2002)
Published Print 22 years, 11 months ago (Sept. 15, 2002)
Funders 0

None

@article{Overton_2002, title={Evidence for differential and redundant function of the Sox genesDichaeteandSoxNduring CNS development inDrosophila}, volume={129}, ISSN={0950-1991}, url={http://dx.doi.org/10.1242/dev.129.18.4219}, DOI={10.1242/dev.129.18.4219}, number={18}, journal={Development}, publisher={The Company of Biologists}, author={Overton, Paul M. and Meadows, Lisa A. and Urban, Joachim and Russell, Steven}, year={2002}, month=sep, pages={4219–4228} }