Abstract
In vertebrates the endoderm germ layer gives rise to most tissues of the digestive tract and controls head and heart morphogenesis. The induction of endoderm development relies on extracellular signals related to Nodals and propagated intracellularly by TGFβ type I receptors ALK4/Taram-A. It is unclear, however, whether Nodal/ALK4/Taram-A signalling is involved only in the specification of endodermal precursors or plays a more comprehensive role in the activation of the endodermal program leading to the irreversible commitment of cells to the endodermal fate. Using cell transplantation experiments in zebrafish, we show that marginal cells become committed to endoderm at the onset of gastrulation and that commitment to endoderm can be reached by intracellular activation of the Nodal pathway induced by expression of an activated form of the taram-A receptor, Tar*. In a manner similar to endoderm progenitors, Tar*-activated blastomeres translocate from their initial site of implantation in the blastoderm to reach the surface of their migration substratum, the yolk syncitial layer, where they join endogenous endodermal derivatives during gastrulation and differentiate according to their anteroposterior position. We demonstrate that Nodal/Tar*-induced commitment does not rely on a secondary signal released by Tar*-expressing cells or a signal released by endogenous endoderm since Tar*-expressing wild-type cells can restore endoderm derivatives when transplanted into the endoderm-deficient mutant casanova. Likewise, the YSL does not appear essential for the maintenance of endodermal identity during gastrulation once the Nodal pathway has been activated. Thus, our results demonstrate that the activation of Nodal signalling is sufficient to commit cells both to an endodermal fate and behaviour. Wild-type endoderm implantation into casanova embryos rescues, in a non-autonomous fashion, the defective fusion of the two heart primordia in the midline, highlighting the importance of endoderm for normal heart morphogenesis.
References
46
Referenced
95
-
Alexander, J., Rothenberg, M., Henry, G. L. and Stainier, D. Y. (1999). casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol.215, 343-357.
(
10.1006/dbio.1999.9441
) -
Alexander, J. and Stainier, D. Y. (1999). A molecular pathway leading to endoderm formation in zebrafish. Curr. Biol.9, 1147-1157.
(
10.1016/S0960-9822(00)80016-0
) -
Argenton, F., Zecchin, E. and Bortolussi, M. (1999). Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev.87, 217-221.
(
10.1016/S0925-4773(99)00151-3
) -
Bally-Cuif, L., Goutel, C., Wassef, M., Wurst, W. and Rosa, F. (2000). Coregulation of anterior and posterior mesendodermal development by a hairy-related transcriptional repressor. Genes Dev.14, 1664-1677.
(
10.1101/gad.14.13.1664
) -
Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F. J., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C. P. et al. ( 1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development123, 293-302.
(
10.1242/dev.123.1.293
) -
Clements, D. and Woodland, H. R. (2000). Changes in embryonic cell fate produced by expression of an endodermal transcription factor, Xsox17. Mech. Dev.99, 65-70.
(
10.1016/S0925-4773(00)00476-7
) -
Dale, L. (1999). Vertebrate development: Multiple phases to endoderm formation. Curr. Biol.9, R812-815.
(
10.1016/S0960-9822(99)80497-7
) -
Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strahle, U. and Rosa, F. (2001). A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev.15, 1487-1492.
(
10.1101/gad.196901
) -
Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier, A. F. and Talbot, W. S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals [see comments]. Nature395, 181-185.
(
10.1038/26013
) -
Ghatpande, S., Ghatpande, A., Zile, M. and Evans, T. (2000). Anterior endoderm is sufficient to rescue foregut apoptosis and heart tube morphogenesis in an embryo lacking retinoic acid. Dev. Biol.219, 59-70.
(
10.1006/dbio.1999.9601
) -
Grapin-Botton, A. and Melton, D. A. (2000). Endoderm development: from patterning to organogenesis. Trends Genet.16, 124-130.
(
10.1016/S0168-9525(99)01957-5
) -
Gritsman, K., Talbot, W. S. and Schier, A. F. (2000). Nodal signaling patterns the organizer. Development127, 921-932.
(
10.1242/dev.127.5.921
) -
Gurdon, J. B. (1988). A community effect in animal development. Nature336, 772-774.
(
10.1038/336772a0
) -
Hauptmann, G. and Gerster, T. (1994). Two-color whole-mount in situ hybridization to vertebrate and Drosophila embryos. Trends Genet.10, 266.
(
10.1016/0168-9525(90)90008-T
) -
Heasman, J., Wylie, C. C., Hausen, P. and Smith, J. C. (1984). Fates and states of determination of single vegetal pole blastomeres of X. laevis. Cell37, 185-194.
(
10.1016/0092-8674(84)90314-3
) -
Ho, R. K. and Kimmel, C. B. (1993). Commitment of cell fate in the early zebrafish embryo. Science261, 109-111.
(
10.1126/science.8316841
) -
Joubin, K. and Stern, C. D. (1999). Molecular interactions continuously define the organizer during the cell movements of gastrulation. Cell98, 559-571.
(
10.1016/S0092-8674(00)80044-6
) -
Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B. and Stainier, D. Y. (2001). casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev.15, 1493-1505.
(
10.1101/gad.892301
) -
Kikuchi, Y., Trinh, L. A., Reiter, J. F., Alexander, J., Yelon, D. and Stainier, D. Y. (2000). The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev.14, 1279-1289.
(
10.1101/gad.14.10.1279
) -
Kimelman, D. and Maas, A. (1992). Induction of dorsal and ventral mesoderm by ectopically expressed Xenopus basic fibroblast growth factor. Development114, 261-269.
(
10.1242/dev.114.1.261
) -
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn.203, 253-310.
(
10.1002/aja.1002030302
) -
Kimmel, C. B., Warga, R. M. and Schilling, T. F. (1990). Origin and organization of the zebrafish fate map. Development108, 581-594.
(
10.1242/dev.108.4.581
) - Lee, K. H., Xu, Q. and Breitbart, R. E. (1996). A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm. Dev. Biol.180, 722-731.
- Linask, K. K. and Lash, J. W. (1988). A role for fibronectin in the migration of avian precardiac cells. II. Rotation of the heart-forming region during different stages and its effects. Dev. Biol.129, 324-329.
-
Muller, F., Albert, S., Blader, P., Fischer, N., Hallonet, M. and Strahle, U. (2000). Direct action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral midline of the CNS. Development127, 3889-3897.
(
10.1242/dev.127.18.3889
) - Muller, M., Weizsacker, E. and Campos-Ortega, J. A. (1996). Transcription of a zebrafish gene of the hairy-Enhancer of split falimy delineates the midbrain anlage in the neural plate. Dev. Genes Evol.206, 153-160.
-
Narita, N., Bielinska, M. and Wilson, D. B. (1997). Wild-type endoderm abrogates the ventral developmental defects associated with GATA-4 deficiency in the mouse. Dev. Biol.189, 270-274.
(
10.1006/dbio.1997.8684
) -
Odenthal, J. and Nusslein-Volhard, C. (1998). fork head domain genes in zebrafish. Dev. Genes Evol.208, 245-258.
(
10.1007/s004270050179
) - Peyrieras, N., Lu, Y., Renucci, A., Lemarchandel, V. and Rosa, F. (1996). Inhibitory interactions controlling organizer activity in fish. C R Acad. Sci. Iii319, 1107-1112.
-
Peyrieras, N., Strahle, U. and Rosa, F. (1998). Conversion of zebrafish blastomeres to an endodermal fate by TGF-beta-related signaling. Curr. Biol.8, 783-786.
(
10.1016/S0960-9822(98)70303-3
) -
Rebagliati, M. R., Toyama, R., Haffter, P. and Dawid, I. B. (1998). cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. USA95, 9932-9937.
(
10.1073/pnas.95.17.9932
) -
Reiter, J. F., Kikuchi, Y. and Stainier, D. Y. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development128, 125-135.
(
10.1242/dev.128.1.125
) -
Renucci, A., Lemarchandel, V. and Rosa, F. (1996). An activated form of type I serine/threonine kinase receptor TARAM-A reveals a specific signalling pathway involved in fish head organiser formation. Development122, 3735-3743.
(
10.1242/dev.122.12.3735
) -
Rodaway, A., Takeda, H., Koshida, S., Broadbent, J., Price, B., Smith, J. C., Patient, R. and Holder, N. (1999). Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development126, 3067-3078.
(
10.1242/dev.126.14.3067
) -
Serbedzija, G. N., Chen, J. N. and Fishman, M. C. (1998). Regulation in the heart field of zebrafish. Development125, 1095-1101.
(
10.1242/dev.125.6.1095
) - Spemann, H. (1938). Embryonic Development and Induction. Reprinted in 1967, New York: Hafner.
-
Strahle, U., Blader, P., Henrique, D. and Ingham, P. W. (1993). Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev.7, 1436-1446.
(
10.1101/gad.7.7b.1436
) -
Townes, P. L. and Holtfreter, J. (1955). Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool.128, 53-120.
(
10.1002/jez.1401280105
) -
Wacker, S., Grimm, K., Joos, T. and Winklbauer, R. (2000). Development and control of tissue separation at gastrulation in Xenopus. Dev. Biol.224, 428-439.
(
10.1006/dbio.2000.9794
) -
Warga, R. M. and Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development126, 827-838.
(
10.1242/dev.126.4.827
) -
Wells, J. M. and Melton, D. A. (1999). Vertebrate endoderm development. Annu. Rev. Cell Dev. Biol.15, 393-410.
(
10.1146/annurev.cellbio.15.1.393
) -
Wells, J. M. and Melton, D. A. (2000). Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development127, 1563-1572.
(
10.1242/dev.127.8.1563
) - Westerfield, M. (1995). The Zebrafish Book. Univ of Oregon Press, Eugene.
-
Wylie, C. C., Snape, A., Heasman, J. and Smith, J. C. (1987). Vegetal pole cells and commitment to form endoderm in Xenopus laevis. Dev. Biol.119, 496-502.
(
10.1016/0012-1606(87)90052-2
) -
Yasuo, H. and Lemaire, P. (1999). A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr. Biol.9, 869-879.
(
10.1016/S0960-9822(99)80391-1
) -
Zeynali, B., Kalionis, B. and Dixon, K. E. (2000). Determination of anterior endoderm in Xenopus embryos. Dev. Dyn.218, 531-536.
(
10.1002/1097-0177(200007)218:3<531::AID-DVDY1010>3.0.CO;2-Q
)
Dates
Type | When |
---|---|
Created | 4 years, 4 months ago (April 26, 2021, 12:36 a.m.) |
Deposited | 2 years, 8 months ago (Dec. 25, 2022, 6:57 a.m.) |
Indexed | 2 months, 1 week ago (June 27, 2025, 9:04 a.m.) |
Issued | 23 years, 10 months ago (Oct. 15, 2001) |
Published | 23 years, 10 months ago (Oct. 15, 2001) |
Published Print | 23 years, 10 months ago (Oct. 15, 2001) |
@article{David_2001, title={Cell autonomous commitment to an endodermal fate and behaviour by activation of Nodal signalling}, volume={128}, ISSN={0950-1991}, url={http://dx.doi.org/10.1242/dev.128.20.3937}, DOI={10.1242/dev.128.20.3937}, number={20}, journal={Development}, publisher={The Company of Biologists}, author={David, Nicolas B. and Rosa, Frédéric M.}, year={2001}, month=oct, pages={3937–3947} }