Crossref
journal-article
Duke University Press
Duke Mathematical Journal (73)
References
40
Referenced
110
-
[ACo] J. Aguilar and J. M. Combes, <i>A class of analytic perturbations for one-body Schrödinger Hamiltonians</i>, Comm. Math. Phys. <b>22</b> (1971), 269–279.
(
10.1007/BF01877510
) -
[BaCo] E. Balslev and J. M. Combes, <i>Spectral properties of many-body Schrödinger operators with dilatation analytic interactions</i>, Comm. Math. Phys. <b>22</b> (1971), 280–294.
(
10.1007/BF01877511
) -
[BLeR] C. Bardos, G. Lebeau, and J. Rauch, <i>Scattering frequencies and Gevrey $3$ singularities</i>, Invent. Math. <b>90</b> (1987), no. 1, 77–114.
(
10.1007/BF01389032
) -
[BoGu] L. Boutet de Monvel and V. Guillemin, <i>The spectral theory of Toeplitz operators</i>, Ann. of Math. Studies, vol. 99, Princeton Univ. Press, Princeton, NJ, 1981.
(
10.1515/9781400881444
) -
[BrCoDu1] P. Briet, J. M. Combes, and P. Duclos, <i>On the location of resonances for Schrödinger operators in the semiclassical limit. I. Resonances free domains</i>, J. Math. Anal. Appl. <b>126</b> (1987), no. 1, 90–99.
(
10.1016/0022-247X(87)90077-1
) -
[BrCoDu2] P. Briet, J. M. Combes, and P. Duclos, <i>On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances</i>, Comm. Partial Differential Equations <b>12</b> (1987), no. 2, 201–222.
(
10.1080/03605308708820488
) -
[CF] A. Cordoba and C. Fefferman, <i>Wave packets and Fourier integral operators</i>, Comm. Partial Differential Equations <b>3</b> (1978), no. 11, 979–1005.
(
10.1080/03605307808820083
) - [DSc] N. Dunford and J. T. Schwartz, <i>Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space</i>, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963.
- [F] K. J. Falconer, <i>The geometry of fractal sets</i>, Cambridge tracts in mathematics, vol. 95, Cambridge University press, Cambridge, 1985.
- [G] C. Gérard, <i>Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes</i>, Mém. Soc. Math. France (N.S.) (1988), no. 31, 146.
-
[GS1] C. Gérard and J. Sjöstrand, <i>Semiclassical resonances generated by a closed trajectory of hyperbolic type</i>, Comm. Math. Phys. <b>108</b> (1987), no. 3, 391–421.
(
10.1007/BF01212317
) -
[GS2] C. Gérard and J. Sjöstrand, <i>Resonances en limite semiclassique et exposants de Lyapunov</i>, Comm. Math. Phys. <b>116</b> (1988), no. 2, 193–213.
(
10.1007/BF01225255
) -
[Go] W. Goodhue, <i>Scattering theory for hyperbolic systems with coefficients of Gevrey type</i>, Trans. Amer. Math. Soc. <b>180</b> (1973), 337–346.
(
10.2307/1996669
) - [HS] B. Helffer and J. Sjöstrand, <i>Résonances en limite semiclassique</i>, Mém. Soc. Math. France (N.S.) (1986), no. 24-25, iv+228.
- [HMa] B. Helffer and A. Martinez, <i>Comparaison entre les diverses notions de résonances</i>, Helv. Phys. Acta <b>60</b> (1987), no. 8, 992–1003.
- [Hö] L. Hörmander, <i>The analysis of linear partial differential operators III</i>, Grundlehren der math. wiss., vol. 274, Springer Verlag, Berlin, 1985.
- [I1]<sup>1</sup> M. Ikawa, <i>On the poles of the scattering matrix for two strictly convex obstacles</i>, J. Math. Kyoto Univ. <b>23</b> (1983), no. 1, 127–194.
- [I1]<sup>2</sup> M. Ikawa, <i>On the poles of the scattering matrix for two strictly convex obstacles: An addendum</i>, J. Math. Kyoto Univ. <b>23</b> (1983), no. 4, 795–802.
- [I1]<sup>3</sup> M. Ikawa, <i>On the distribution of the poles of the scattering matrix for two strictly convex obstacles</i>, Hokkaido Math. J. <b>12</b> (1983), no. 3, 343–359.
- [I2]<sup>1</sup> M. Ikawa, <i>Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis</i>, Preprint.
-
[I2]<sup>2</sup> Mitsuru Ikawa, <i>On the scattering matrix for two convex obstacles</i>, Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, pp. 63–84.
(
10.1016/B978-0-12-501658-2.50008-7
) - [I3] M. Ikawa, <i>Decay of solutions of the wave equations in the exterior of several convex bodies</i>, Preprint.
- [I4] M. Ikawa, 1988, Proc. of Japan Academy.
-
[In] A. Intissar, <i>A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces $\bf R\sp n$</i>, Comm. Partial Differential Equations <b>11</b> (1986), no. 4, 367–396.
(
10.1080/03605308608820428
) -
[Ke] A. Kelley, <i>The stable, center-stable, center, center-unstable and unstable manifolds</i>, W. A. Benjamin Inc., New York, Amsterdam, 1967, Appendix C in Transversal mappings and flows by R. Abraham and J. Robbin.
(
10.1016/0022-0396(67)90016-2
) -
[K] M. Klein, <i>On the absence of resonances for Schrödinger operators with nontrapping potentials in the classical limit</i>, Comm. Math. Phys. <b>106</b> (1986), no. 3, 485–494.
(
10.1007/BF01207259
) - [LPh] P. Lax and R. Phillips, <i>Scattering theory</i>, Pure and Appl. Math., vol. 26, Academic Press, New York, 1967.
-
[Le] G. Lebeau, <i>Régularité Gevrey $3$ pour la diffraction</i>, Comm. Partial Differential Equations <b>9</b> (1984), no. 15, 1437–1494.
(
10.1080/03605308408820368
) -
[M] R. Melrose, <i>Polynomials bound on the distribution of poles in scattering by an obstacle</i>, Proceedings of the Journées “Equations aux dérivées partielles” à St Jean de Montes, Société Mathématique de France, 4–8 Juin 1984.
(
10.5802/jedp.285
) -
[N1] S. Nakamura, <i>A note on the absence of resonances for Schrödinger operators</i>, Lett. Math. Phys. <b>16</b> (1988), no. 3, 217–223.
(
10.1007/BF00398958
) -
[N2] S. Nakamura, <i>Shape resonances for distortion analytic Schrödinger operators</i>, Preprint.
(
10.1080/03605308908820659
) -
[PSt] V. Petkov Stojanov, <i>Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles</i>, Preprint, 1987.
(
10.5802/jedp.332
) -
[Sh] M. Shub, <i>Global stability of dynamical systems</i>, Springer Verlag, New York, 1987.
(
10.1007/978-1-4757-1947-5
) - [Si] Ya. G. Sinai, <i>Development of Krylov's ideas</i>, Princeton Univ. Press, 1979, Addendum to Works on the foundations of statistical physics, by N. S. Krylov.
- [S1] J. Sjöstrand, <i>Singularités analytiques microlocales</i>, Astérisque, 95, Astérisque, vol. 95, Soc. Math. France, Paris, 1982, pp. 1–166.
- [S2] J. Sjöstrand, <i>Propagation of singularities for operators with multiple involutive characteristics</i>, Ann. Inst. Fourier (Grenoble) <b>26</b> (1976), no. 1, v, 141–155.
- [S3] J. Sjöstrand, <i>Semiclassical resonances generated by nondegenerate critical points</i>, Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 402–429.
- [S4] J. Sjöstrand, <i>Estimates on the number of resonances for semiclassical Schrödinger operators</i>, Partial Differential Equations (Rio de Janeiro, 1986), Lecture Notes in Math., vol. 1324, Springer, Berlin, 1988, pp. 286–292.
-
[T] C. Tricot, <i>Two definitions of fractional dimension</i>, Math. Proc. Cambridge Philos. Soc. <b>91</b> (1982), no. 1, 57–74.
(
10.1017/S0305004100059119
) -
[Z] M. Zworski, <i>Sharp polynomial bounds on the number of scattering poles</i>, Preprint.
(
10.1215/S0012-7094-89-05913-9
)
Dates
Type | When |
---|---|
Created | 20 years, 9 months ago (Nov. 11, 2004, 9:28 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 30, 2024, 12:20 p.m.) |
Indexed | 2 weeks, 2 days ago (Aug. 21, 2025, 1:26 p.m.) |
Issued | 35 years, 7 months ago (Feb. 1, 1990) |
Published | 35 years, 7 months ago (Feb. 1, 1990) |
Published Print | 35 years, 7 months ago (Feb. 1, 1990) |
@article{Sj_strand_1990, title={Geometric bounds on the density of resonances for semiclassical problems}, volume={60}, ISSN={0012-7094}, url={http://dx.doi.org/10.1215/s0012-7094-90-06001-6}, DOI={10.1215/s0012-7094-90-06001-6}, number={1}, journal={Duke Mathematical Journal}, publisher={Duke University Press}, author={Sjöstrand, Johannes}, year={1990}, month=feb }