Crossref journal-article
Institute of Mathematical Statistics
The Annals of Statistics (108)
Authors 2
  1. Emmanuel Candès (first)
  2. Terence Tao (additional)
References 26 Referenced 68
  1. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression (with discussion). <i>Ann. Statist.</i> <b>32</b> 407–499. (10.1214/009053604000000067)
  2. Osborne, M., Presnell, B. and Turlach, B. (2000). A new approach to variable selection in least squares problems. <i>IMA J. Numer. Anal.</i> <b>20</b> 389–403. (10.1093/imanum/20.3.389)
  3. Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Sparsity oracle inequalities for the lasso. <i>Electron. J. Statist.</i> <b>1</b> 169–194. (10.1214/07-EJS008)
  4. Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model selection via penalization. <i>Probab. Theory Related Fields</i> <b>113</b> 301–413. (10.1007/s004400050210)
  5. Birgé, L. and Massart, P. (2001). Gaussian model selection. <i>J. Eur. Math. Soc.</i> <b>3</b> 203–268. (10.1007/s100970100031)
  6. Foster, D. and George, E. (1994). The risk inflation criterion for multiple regression. <i>Ann. Statist.</i> <b>22</b> 1947–1975. (10.1214/aos/1176325766)
  7. Osborne, M., Presnell, B. and Turlach, B. (2000). On the LASSO and its dual. <i>J. Comput. Graph. Statist.</i> <b>9</b> 319–337. (10.1080/10618600.2000.10474883)
  8. Birgé, L. and Massart, P. (1997). From model selection to adaptive estimation. In <i>Festschrift for Lucien Le Cam</i> (D. Pollard, E. Torgersen and G. L. Yang, eds.) 55–87. Springer, New York. (10.1007/978-1-4612-1880-7_4)
  9. Candès, E. J., Romberg, J. and Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. <i>Comm. Pure Appl. Math.</i> <b>59</b> 1207–1223. (10.1002/cpa.20124)
  10. Candès, E. J., Romberg, J. and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. <i>IEEE Trans. Inform. Theory</i> <b>52</b> 489–509. (10.1109/TIT.2005.862083)
  11. Candès, E. J. and Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? <i>IEEE Trans. Inform. Theory</i> <b>52</b> 5406–5425. (10.1109/TIT.2006.885507)
  12. Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal $\ell_1$-norm solution is also the sparsest solution. <i>Comm. Pure Appl. Math.</i> <b>59</b> 797–829. (10.1002/cpa.20132)
  13. Donoho, D. L. (2006). Compressed sensing. <i>IEEE Trans. Inform. Theory</i> <b>52</b> 1289–1306. (10.1109/TIT.2006.871582)
  14. Fan, J. and Lv, J. (2006). Sure independence screening for ultra-high dimensional feature space. Unpublished manuscript. Available at arxiv.org/abs/math/0612857. (10.1111/j.1467-9868.2008.00674.x)
  15. Wainwright, M. (2007). Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. Technical Report 725, Dept. Statistics, Univ. California, Berkeley. (10.1109/TIT.2009.2032816)
  16. Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Aggregation for Gaussian regression. <i>Ann. Statist.</i> <b>35</b> 1674–1697. (10.1214/009053606000001587)
  17. Candès, E. J. and Randall, P. A. (2006). Highly robust error correction by convex programming. Available at arxiv.org/abs/cs/0612124. (10.1109/TIT.2008.924688)
  18. Candès, E. J. and Romberg, J. (2006). Quantitative robust uncertainty principles and optimally sparse decompositions. <i>Found. Comput. Math.</i> <b>6</b> 227–254. (10.1007/s10208-004-0162-x)
  19. Candès, E. J. and Romberg, J. (2007). Sparsity and incoherence in compressive sampling. <i>Inverse Problems</i> <b>23</b> 969–985. (10.1088/0266-5611/23/3/008)
  20. Donoho, D. (2006). For most large underdetermined systems of equations the minimal $\ell_1$-norm near-solution approximates the sparsest near-solution. <i>Comm. Pure Appl. Math.</i> <b>59</b> 907–934. (10.1002/cpa.20131)
  21. Gilbert, A., Muthukrishnan, S. and Strauss, M. (2005). Improved time bounds for near-optimal sparse Fourier representation. In <i>Wavelets XI. Proc. SPIE Symposium on Optics and Photonics</i> 398–412. San Diego, CA. (10.1117/12.615931)
  22. Kim, S.-J., Koh, K., Lustig, M., Boyd, S. and Gorinevsky, D. (2007). An efficient method for $\ell_1$-regularized least squares problems with applications in signal processing and statistics. <i>IEEE J. Selected Topics in Signal Processing.</i> To appear.
  23. Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F. and Baraniuk, R. G. (2006). A new compressive imaging camera architecture using optical-domain compression. In <i>Computational Imaging IV</i>. <i>Proc. SPIE International Symposium on Electronic Imaging</i> <b>1</b> 43–52. San Jose, CA. (10.1117/12.659602)
  24. Tropp, J. A. (2007). On the conditioning of random subdictionaries. <i>Appl. Comput. Harmon. Anal.</i> To appear. (10.1016/j.acha.2007.09.001)
  25. Wainwright, M. (2006). Sharp thresholds for noisy and high-dimensional recovery of sparsity using $\ell_1$-constrained quadratic programming. Technical Report 709, Dept. Statistics, Univ. California, Berkeley. (10.1109/TIT.2009.2016018)
  26. Meinshausen, N. and Yu, B. (2007). Lasso-type recovery of sparse representations for high-dimensional data. <i>Ann. Statist.</i> To appear. (10.1214/07-AOS582)
Dates
Type When
Created 17 years, 5 months ago (March 5, 2008, 12:59 p.m.)
Deposited 7 months ago (Jan. 28, 2025, 5:48 p.m.)
Indexed 4 weeks, 2 days ago (Aug. 2, 2025, 12:41 a.m.)
Issued 17 years, 9 months ago (Dec. 1, 2007)
Published 17 years, 9 months ago (Dec. 1, 2007)
Published Print 17 years, 9 months ago (Dec. 1, 2007)
Funders 0

None

@article{Cand_s_2007, title={Rejoinder: The Dantzig selector: Statistical estimation when p is much larger than n}, volume={35}, ISSN={0090-5364}, url={http://dx.doi.org/10.1214/009053607000000532}, DOI={10.1214/009053607000000532}, number={6}, journal={The Annals of Statistics}, publisher={Institute of Mathematical Statistics}, author={Candès, Emmanuel and Tao, Terence}, year={2007}, month=dec }