Abstract
Abstract:The exponential,Moore's Law, progress of electronics may be continued beyond the 10‐nm frontier if the currently dominant CMOS technology is replaced by hybridCMOLcircuits combining a silicon MOSFET stack and a few layers of parallel nanowires connected by self‐assembled molecular electronic devices. Such hybrids promise unparalleled performance for advanced information processing, but require special architectures to compensate for specific features of the molecular devices, including low voltage gain and possible high fraction of faulty components. Neuromorphic networks with their defect tolerance seem the most natural way to address these problems. Such circuits may be trained to perform advanced information processing including (at least) effective pattern recognition and classification. We are developing a family of distributed crossbar network (CrossNet) architectures that permit the combination of high connectivity neuromorphic circuits with high component density. Preliminary estimates show that this approach may eventually allow us to place a cortex‐scale circuit with about 1010neurons and about 1014synapses on an approximately 10 × 10 cm2silicon wafer. Such systems may provide an average cell‐to‐cell latency of about 20 nsec and, thus, perform information processing and system training (possibly including self‐evolution after initial training) at a speed that is approximately six orders of magnitude higher than in its biological prototype and at acceptable power dissipation.
References
70
Referenced
89
- The International Technology Roadmap for Semiconductors 2001 Edition. Available on the Web at <http://www.public.itrs.net/Files/2001ITRS/Home.htm>.
10.1109/5.915374
-
Likharev K.K. 2003. Electronics below 10 nm.InNano and Giga Challenges in Microelectronics. J. Greer A. Korkin & J. Labanowski Eds.: 27–68. Elsevier Amsterdam.
(
10.1016/B978-044451494-3/50002-0
) -
Averin D.V. & K.K. Likharev. 1991. Single‐electronics.InMesoscopic Phenomena in Solids. B. Altshuler et al. Eds.: 173–271. Elsevier Amsterdam.
(
10.1016/B978-0-444-88454-1.50012-7
) -
Grabert H. & M. Devoret Eds. 1992. Single‐Charge Tunneling. Plenum New York.
(
10.1007/978-1-4757-2166-9
) 10.1109/5.752518
10.1109/MSPEC.2001.925276
10.1126/science.293.5531.785
10.1088/0957-4484/12/2/303
10.1111/j.1749-6632.1998.tb09884.x
10.1021/cm010165m
10.1021/ar0000612
10.1111/j.1749-6632.2002.tb03026.x
-
Chen J. et al.2003. Molecular electronic devices. In Advanced Semiconductor and Organic Nano‐Techniques (Part III). H. Morko Ed.: 43–187. Elsevier Amsterdam.
(
10.1016/B978-012507060-7/50023-4
) 10.1088/0957-4484/13/2/311
{'issue': '226801', 'key': 'e_1_2_8_17_2', 'first-page': '1', 'article-title': 'Conductance of small molecular junctions', 'volume': '88', 'author': 'Zhitenev N.B.', 'year': '2002', 'journal-title': 'Phys. Rev. Lett.'}
/ Phys. Rev. Lett. / Conductance of small molecular junctions by Zhitenev N.B. (2002)10.1038/nature00791
10.1038/nature00790
10.1126/science.285.5426.391
10.1126/science.289.5482.1172
10.1126/science.1060294
/ Science / Conductance switching in single‐molecules through conformational changes by Donhauser Z.I.10.1063/1.1521788
10.1126/science.280.5370.1716
10.1109/5.573742
- Mountcastle V.B. 1998. The Cerebral Cortex. Harvard University Press Cambridge.
-
Braitenberg V. & A. Schüz. 1998. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edit. Springer Berlin.
(
10.1007/978-3-662-03733-1
) 10.1063/1.118329
10.1002/1097-007X(200011/12)28:6<523::AID-CTA125>3.0.CO;2-R
10.1088/0957-4484/12/1/311
10.1109/16.536815
10.1063/1.121553
-
Fölling S. Ö. Türel & K. Likharev. 2001. Single‐electron latching switches as nanoscale synapses.InProceedings of the International Joint Conference on Neural Networks: 216–221. International Neural Network Society Mount Royal New York.
(
10.1109/IJCNN.2001.939020
) 10.1002/cta.223
-
Türel Ö. & K.K. Likharev. 2003. CrossNets: neuromorphic networks for nanoelectronic implementation.InArtificial Neural Networks and Neural Information Processing 743–760. Springer Berlin.
(
10.1007/3-540-44989-2_90
) -
Türel Ö. I. Muckra & K.K. Likharev. 2003. Possible nanoelectronic implementation of neuromorphic networks.InProceedings of the International Joint Conference on Neural Networks. 365–370. International Neural Network Society Mount Royal New York.
(
10.1109/IJCNN.2003.1223373
) 10.1103/PhysRevLett.72.3226
10.1116/1.587625
10.1007/BF00683484
10.1103/PhysRevB.44.6199
-
Kouwenhoven L.P. et al.1997. Electron transport in quantum dots. In Mesoscopic Electron Transfer. L. Sohn et al. Eds.: 105–215. Kluwer Dordrecht.
(
10.1007/978-94-015-8839-3_4
) 10.1021/ja010330z
10.1021/ar9600446
10.1002/(SICI)1521-396X(199804)166:2<835::AID-PSSA835>3.0.CO;2-9
10.1002/anie.199619361
10.1021/ja017150
10.1021/cm00017a013
10.1021/jp000706f
10.1016/S0022-328X(00)94049-X
10.1021/cr9500287
10.1002/1521-3765(20011203)7:23<5118::AID-CHEM5118>3.0.CO;2-1
10.1021/ja960317s
10.1021/ja00177a027
10.1021/ja00744a016
10.1002/anie.199316431
-
Hertz J. A. Krogh & R.G. Palmer. 1991. Introduction to the Theory of Neural Computation. Perseus Cambridge.
(
10.1063/1.2810360
) 10.1103/PhysRevLett.57.913
- Fausett L. 1994. Fundamentals of Neural Networks. Prentice Hall Upper Saddle River.
- Haykin S. 1999. Neural Networks. Prentice Hall Upper Saddle River.
- Dayan P. & L.F. Abbott. 2001. Theoretical Neuroscience. MIT Press Cambridge.
-
Rosen‐Zvi M. & I. Kanter. 2001. Training a perceptron with a discrete weight space. Phys. Rev. E64: 046109 1–6.
(
10.1103/PhysRevE.64.046109
) 10.1016/0893-6080(88)90021-4
10.1109/31.7600
10.1109/31.7601
10.1103/PhysRevLett.61.259
10.1016/S0375-9601(00)00726-X
- Türel Ö. & K.K. Likharev. 2003. CMOL CrossNets: possible neuromorphic nanoelectronic circuits. Neural Information Processing Systems Meeting Vancouver Canada December 2003. Submitted for presentation. Preprint: <http://www.rsfq1.physics.sunysb.edu/~likharev/nano/Vancouver.pdf>.
- Fogel D.B. 1995. Evolutionary Computation. IEEE Press New York.
-
Bäck T. 1996. Evolutionary Algorithms in Theory and Practice. Oxford Press New York.
(
10.1093/oso/9780195099713.003.0007
) - Stoica A. D. Keymeulen & J. Lohn Eds. 1999. Proceedings of the 1st NASA/DoD Workshop on Evolvable Hardware. IEEE Comp. Soc. Los Alamitos.
10.1109/5.784219
Dates
Type | When |
---|---|
Created | 21 years, 6 months ago (Feb. 19, 2004, 11:37 p.m.) |
Deposited | 8 months, 2 weeks ago (Dec. 15, 2024, 6:30 a.m.) |
Indexed | 1 day, 14 hours ago (Sept. 2, 2025, 6:36 a.m.) |
Issued | 21 years, 9 months ago (Dec. 1, 2003) |
Published | 21 years, 9 months ago (Dec. 1, 2003) |
Published Online | 19 years, 7 months ago (Jan. 24, 2006) |
Published Print | 21 years, 9 months ago (Dec. 1, 2003) |
@article{LIKHAREV_2003, title={CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits}, volume={1006}, ISSN={1749-6632}, url={http://dx.doi.org/10.1196/annals.1292.010}, DOI={10.1196/annals.1292.010}, number={1}, journal={Annals of the New York Academy of Sciences}, publisher={Wiley}, author={LIKHAREV, KONSTANTIN and MAYR, ANDREAS and MUCKRA, IBRAHIM and TÜREL, ÖZGÜR}, year={2003}, month=dec, pages={146–163} }