Crossref journal-article
Society of Exploration Geophysicists
GEOPHYSICS (186)
Abstract

Nonhydrostatic stress, an often‐ignored source of seismic anisotropy, is universally present in the subsurface and may be as common as intrinsic or fracture‐induced anisotropy. Nonhydrostatic stress, applied to an initially transversely isotropic solid with vertical symmetry axis (VTI), results in an effective medium having almost orthorhombic symmetry (provided that one of the principal stresses is aligned with the symmetry axis). The symmetry planes observed in this orthorhombic medium are aligned with the orientations of the principal stresses, and anisotropic parameters (ε(1,2), δ(1,2,3), and γ(1,2)) can reveal information about the stress magnitudes. Thus, time‐lapse monitoring of changes in anisotropy potentially can provide information on temporal variations in the stress field.We use nonlinear elasticity theory to relate the anisotropic parameters to the magnitudes of the principal stresses and verify these relationships in a physical modeling study. Under the assumption of weak background and stress‐induced anisotropy, each effective anisotropic parameter reduces to the sum of the corresponding Thomsen parameter for the unstressed VTI background and the corresponding parameter associated with the nonhydrostatic stress. The stress‐related anisotropic parameters depend only on the differences between the magnitudes of principal stresses; therefore, principal stresses can influence anisotropic parameters only if their magnitudes differ in the symmetry plane in which the anisotropic parameters are defined.We test these predictions on a physical modeling data set acquired on a block of Berea Sandstone exhibiting intrinsic VTI anisotropy. Uniaxial stress, applied normal to the VTI symmetry axis, i.e., horizontally, produces an effective medium that is close to orthorhombic. We use two different methods to estimate the anisotropic parameters and study their variation as a function of stress. The first method utilizes conventional measurements of transmission velocities along the principal axes of the sample. The second method uses PP and PS reflection data acquired along seven different azimuths on the surface of the block.In accordance with theoretical predictions, the anisotropic parameters in the vertical plane normal to the stress are almost insensitive to the magnitude of the stress. In contrast, anisotropic parameters in the vertical plane of the applied stress increase approximately in a linear fashion with increasing stress. Except for the parameter δ(1), comparison of the measured values of anisotropic parameters with theoretical predictions shows satisfactory agreement.Despite some documented discrepancies, we believe that nonlinear elasticity may provide a suitable framework for estimating pore pressure and 3D stresses from seismic data.

Bibliography

Sarkar, D., Bakulin, A., & Kranz, R. L. (2003). Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone. GEOPHYSICS, 68(2), 690–704.

Authors 3
  1. Debashish Sarkar (first)
  2. Andrey Bakulin (additional)
  3. Robert L. Kranz (additional)
References 34 Referenced 98
  1. 10.1190/1.1444864
  2. 10.1190/1.1444864
  3. Bakulin, A., Slater, C., Bunain, H., and Grechka, V., 2000c, Estimation of azimuthal anisotropy and fracture parameters from multi‐azimuthal walkaway VSP in the presence of lateral heterogeneity: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1405–1408. (10.1190/1.1815665)
  4. {'volume-title': 'Acoustoelasticity of rocks', 'year': '2000', 'author': 'Bakulin A. V.', 'key': 'R3'} / Acoustoelasticity of rocks by Bakulin A. V. (2000)
  5. {'key': 'R4', 'first-page': '286', 'author': 'Bourgoyne A. T.', 'year': '1991', 'journal-title': 'Soc. Petr. Eng.'} / Soc. Petr. Eng. by Bourgoyne A. T. (1991)
  6. 10.2118/27488-PA
  7. 10.1190/1.1444664
  8. Eaton, B. A., 1975, The equation for geopressure prediction from well logs: Soc. Petr. Eng. Publ., 5544, 1–11. (10.2118/5544-MS)
  9. {'volume-title': 'Petroleum related rock mechanics', 'year': '1992', 'author': 'Fjær E.', 'key': 'R8'} / Petroleum related rock mechanics by Fjær E. (1992)
  10. 10.1190/1.1444512
  11. 10.1190/1.1512784
  12. 10.1107/S0365110X53000909
  13. 10.1029/97JB02380
  14. 10.1029/95JB02880
  15. 10.1190/1.1442029
  16. 10.1190/1.1443836
  17. 10.1029/JB076i008p02022
  18. 10.1190/1.1444217
  19. Prioul, R., Bakulin, A., and Bakulin, V., 2001, Three‐parameter model for predicting acoustic velocities in transversely isotropic rocks under arbitrary stress: 71st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1732–1735. (10.1190/1.1816457)
  20. 10.2516/ogst:1998061
  21. 10.1190/1.1444405
  22. Schwartz, L. M., Murphy, III, W. F., and Berryman, J. G., 1994, Stress‐induced transverse isotropy in rocks: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1081–1085. (10.1190/1.1822703)
  23. Sinha, B. K., 2001, Stress‐induced changes in the borehole Stoneley and flexural dispersions: 71st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 337–340. (10.1190/1.1816610)
  24. 10.1190/1.1444105
  25. 10.1190/1.1444695
  26. 10.1190/1.1444734
  27. 10.1190/1.1440058
  28. 10.1190/1.1442051
  29. Thurston, R. N., 1974, Waves in solids,inFlügge, S., Ed., Mechanics of solids,inTruesdell, C., Ed., Encyclopedia of physicsVIa/4, Springer‐Verlag Berlin, 109–308. (10.1007/978-3-642-69571-1_2)
  30. 10.1103/PhysRev.133.A1604
  31. 10.1190/1.1444231
  32. 10.1190/1.1444231
  33. 10.1121/1.415986
  34. 10.1190/1.1444303
Dates
Type When
Created 22 years, 4 months ago (April 21, 2003, 9:46 a.m.)
Deposited 4 years, 2 months ago (June 5, 2021, 10:56 p.m.)
Indexed 1 day, 1 hour ago (Aug. 27, 2025, 11:44 a.m.)
Issued 22 years, 5 months ago (March 1, 2003)
Published 22 years, 5 months ago (March 1, 2003)
Published Print 22 years, 5 months ago (March 1, 2003)
Funders 0

None

@article{Sarkar_2003, title={Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone}, volume={68}, ISSN={1942-2156}, url={http://dx.doi.org/10.1190/1.1567240}, DOI={10.1190/1.1567240}, number={2}, journal={GEOPHYSICS}, publisher={Society of Exploration Geophysicists}, author={Sarkar, Debashish and Bakulin, Andrey and Kranz, Robert L.}, year={2003}, month=mar, pages={690–704} }