Crossref journal-article
Society of Exploration Geophysicists
GEOPHYSICS (186)
Abstract

Analyses of sonic logs in a horizontal well provide new information about mechanical properties of rocks, made possible by recent developments in our understanding of acoustic wave propagation in prestressed formations. Most sections of this horizontal well exhibit azimuthal shear isotropy, indicating isotropic stresses in the plane perpendicular to the well trajectory, leading to stable wellbore conditions. However, two sections show dipole dispersion crossovers that confirm the presence of stress‐induced shear anisotropy caused by a difference between the maximum and minimum stresses in the plane perpendicular to the well trajectory. The two dipole dispersions are obtained by processing the recorded waveforms by a modified matrix pencil algorithm. The fast‐shear direction is estimated from Alford rotation of the cross‐dipole waveforms. One section of the well exhibits the fast‐shear direction parallel to the overburden stress as the maximum stress direction, whereas the other section has the fast‐shear direction parallel to the horizontal stress that is larger than the overburden stress. The cause of this change in the fast‐shear direction is believed to be the well’s penetration into a 3-ft-thick bed with lower porosity and permeability and significantly higher elastic stiffnesses than those in the other part of the homogeneous, high‐permeability reservoir. A stiff bed is likely to have greater stresses in its plane than perpendicular to it, which would make the horizontal stresses greater than the vertical.

Bibliography

Sinha, B. K., Kane, M. R., & Frignet, B. (2000). Dipole dispersion crossover and sonic logs in a limestone reservoir. GEOPHYSICS, 65(2), 390–407.

Authors 3
  1. Bikash K. Sinha (first)
  2. Michael R. Kane (additional)
  3. Bernard Frignet (additional)
References 34 Referenced 58
  1. Addis, T., Boulter, D., Last, N., Roca‐Ramisa, L., and Plumb, D., 1993, The quest for borehole stability in the Cusiana field, Colombia: Oil‐field Review,3, No. 3, 33–43.
  2. Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy: 56th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 476–479. (10.1190/1.1893036)
  3. 10.1029/JZ067i011p04427
  4. Brie, A., Kimball, C. V., Pabon, J., and Saiki, Y., 1997, Shear slowness determination from dipole measurements: 38th Ann. Logging Symp., Soc. Prof. Well Log Anal. paper F.
  5. {'key': 'R5', 'first-page': '537', 'volume': '96', 'author': 'Cheng C. H.', 'year': '1982', 'journal-title': 'J. Geophys. Res.', 'ISSN': 'http://id.crossref.org/issn/0148-0227', 'issn-type': 'print'} / J. Geophys. Res. by Cheng C. H. (1982)
  6. Ekstrom, M. P., 1995, Dispersion estimation from borehole acoustic arrays using a modified matrix pencil algorithm: Presented at the 29th Asilomar Conference on Signals, Systems, and Computers.
  7. Esmersoy, C., Kane, M., Boyd, A., and Denoo, S., 1995, Fracture and stress evaluation using dipole‐shear anisotropy logs: 36th Ann. Logging Symp., Soc. Prof. Well Log Anal., paper J. (10.1190/1.1822720)
  8. Esmersoy, C., Koster, K., Williams, M., Boyd, A., and Kane, M., 1994, Dipole shear anisotropy logging: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1139–1142. (10.1190/1.1822720)
  9. 10.1139/e82-118
  10. Harrison, A. R., Randall, C. J., Aron, J. B., Morris, C. F., Wignall, A. H., and Dworak, R. A., 1990, Acquisition and analysis of sonic waveforms from a borehole monopole and dipole source for the determination of compressional and shear speeds and their relation to rock mechanical properties and surface seismic data: 65th Ann. Tech. Conf. and Exhib., Soc. Petrol. Engs., paper SPE 20557. (10.2118/20557-MS)
  11. Jaeger, J. C., and Cook, N. G., 1979, Fundamentals of Rock Mechanics, Halsted Press.
  12. 10.1190/1.1444333
  13. 10.1190/1.1441659
  14. Liu, H‐L., and Randall, C. J., 1991, Synthetic waveforms in noncircular boreholes using a boundary integral equation method: 61st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 843–845. (10.1190/1.1888879)
  15. Mueller, M., Boyd, A., and Esmersoy, C., 1994, Case studies of the dipole shear anisotropy log: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1143–1146. (10.1190/1.1822721)
  16. Plumb, R. A., 1994, Variations of the least horizontal stress magnitude in sedimentary rocks: 1st North American Rock Mechanics Symp., University of Texas, Austin, Proceedings, 71–80.
  17. 10.1029/JB090iB07p05513
  18. 10.1121/1.400522
  19. 10.1190/1.1443748
  20. 10.1111/j.1365-246X.1997.tb04073.x
  21. 10.1111/j.1365-246X.1997.tb04073.x
  22. 10.1111/j.1365-246X.1997.tb04073.x
  23. 10.1190/1.1444105
  24. 10.1190/1.1443660
  25. Sinha, B. K., Plona, T. J., Winkler, K. W., and D’Angelo, R. M., 1995, Stress‐induced dipole anisotropy in a dry Berea sandstone: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 22–25. (10.1190/1.1887490)
  26. Tang, X. M., and Chunduru, R. K., 1997, Inversion of shear wave anisotropy from cross‐dipole logging data: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 22–25. (10.1190/1.1885881)
  27. 10.1190/1.1442051
  28. 10.1121/1.1908623
  29. 10.1190/1.1444116
  30. 10.1190/1.1444303
  31. 10.1190/1.1440089
  32. 10.1029/JB090iB07p05523
  33. 10.1029/92JB00132
  34. 10.1029/JB085iB11p06113
Dates
Type When
Created 22 years, 10 months ago (Oct. 11, 2002, 3:52 p.m.)
Deposited 4 years, 3 months ago (May 26, 2021, 6:50 a.m.)
Indexed 4 days, 23 hours ago (Aug. 26, 2025, 2:56 a.m.)
Issued 25 years, 5 months ago (March 1, 2000)
Published 25 years, 5 months ago (March 1, 2000)
Published Print 25 years, 5 months ago (March 1, 2000)
Funders 0

None

@article{Sinha_2000, title={Dipole dispersion crossover and sonic logs in a limestone reservoir}, volume={65}, ISSN={1942-2156}, url={http://dx.doi.org/10.1190/1.1444734}, DOI={10.1190/1.1444734}, number={2}, journal={GEOPHYSICS}, publisher={Society of Exploration Geophysicists}, author={Sinha, Bikash K. and Kane, Michael R. and Frignet, Bernard}, year={2000}, month=mar, pages={390–407} }