Crossref journal-article
Springer Science and Business Media LLC
Advanced Structural and Chemical Imaging (297)
Abstract

AbstractUnderstanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical fluid cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. Classical models are found to greatly differ from MD in predicted concentration profiles. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulation together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.

Bibliography

Welch, D. A., Mehdi, B. L., Hatchell, H. J., Faller, R., Evans, J. E., & Browning, N. D. (2015). Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM. Advanced Structural and Chemical Imaging, 1(1).

Authors 6
  1. David A Welch (first)
  2. B Layla Mehdi (additional)
  3. Hannah J Hatchell (additional)
  4. Roland Faller (additional)
  5. James E Evans (additional)
  6. Nigel D Browning (additional)
References 48 Referenced 37
  1. Sharma, P, Bhatti, TS: A review on electrochemical double-layer capacitors. Energy Conv and Manage. 51, 2901 (2010) (10.1016/j.enconman.2010.06.031) / Energy Conv and Manage. by P Sharma (2010)
  2. Choi, N-S, Chen, Z, Freunberger, SA, Ji, X, Sun, Y-K, Amine, K, Yushin, G, Nazar, LF, Cho, J, Bruce, PG: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994 (2012) (10.1002/anie.201201429) / Angew. Chem. Int. Ed. by N-S Choi (2012)
  3. Winter, M, Brodd, RJ: What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245 (2004) (10.1021/cr020730k) / Chem. Rev. by M Winter (2004)
  4. Gouy, G: Sur la constitution de la charge électrique à la surface d’um électrolyte. J. Phys. 9, 457 (1910) / J. Phys. by G Gouy (1910)
  5. Chapman, DL: A contribution to the theory of electrocapillarity. Philos Mag. 25, 475 (1913) (10.1080/14786440408634187) / Philos Mag. by DL Chapman (1913)
  6. von Helmholtz, HLF: Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Physik und Chemie. 89, 211 (1853) (10.1002/andp.18531650603) / Ann Physik und Chemie. by HLF von Helmholtz (1853)
  7. Glosli, JN, Philpott, MR: Adsorption of hydrated halide ions on charged electrodes. Molecular dynamics simulation. J. Chem. Phys. 98, 9995 (1993) (10.1063/1.464325) / J. Chem. Phys. by JN Glosli (1993)
  8. Spohr, E: Molecular simulation of the electrochemical double layer. Electrochim. Acta. 44, 1697 (1999) (10.1016/S0013-4686(98)00289-8) / Electrochim. Acta. by E Spohr (1999)
  9. Philpott, MR, Glosli, JN: Screening of charged electrodes in aqueous electrolytes. J. Electrochem. Soc. 142, L25 (1995) (10.1149/1.2044124) / J. Electrochem. Soc. by MR Philpott (1995)
  10. Liu, XH, Huang, S, Picraux, ST, Li, J, Zhu, T, Huang, JY: Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011) (10.1021/nl2024118) / Nano Lett. by XH Liu (2011)
  11. Yu, X, Wang, Q, Zhou, Y, Li, H, Yang, X-Q, Nam, K-W, Ehrlich, SN, Khalid, S, Meng, YS: High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem. Commun. 48, 11537 (2012) (10.1039/c2cc36382h) / Chem. Commun. by X Yu (2012)
  12. Mehdi, BL, Gu, M, Parent, LR, Xu, W, Nasybulin, EN, Chen, X, Unocic, RR, Xu, P, Welch, DA, Abellan, P, Zhang, J-G, Liu, J, Wang, C-M, Arslan, I, Evans, J, Browning, ND: In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal. 20, 484 (2014) (10.1017/S1431927614000488) / Microsc. Microanal. by BL Mehdi (2014)
  13. Sacci, RL, Dudney, NJ, More, KL, Parent, LR, Arslan, I, Browning, ND, Unocic, RR: Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104 (2014) (10.1039/c3cc49029g) / Chem. Commun. by RL Sacci (2014)
  14. White, ER, Singer, SB, Augustyn, V, Hubbard, WA, Mecklenburg, M, Dunn, B, Regan, BC: In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano. 6, 6308 (2012) (10.1021/nn3017469) / ACS Nano. by ER White (2012)
  15. Dunn, JH, Lambrakos, SG, Moore, PG, Nagumo, M: An algorithm for calculating intramolecular angle-dependent forces on vector computers. J Comp Phys 100, 17 (1992) (10.1016/0021-9991(92)90306-J) / J Comp Phys by JH Dunn (1992)
  16. Zhou, Y, Cook, M, Karplus, M: Protein motions at zero-total angular momentum: the importance of long-range correlations. Biophys. J. 79, 2902 (2000) (10.1016/S0006-3495(00)76527-1) / Biophys. J. by Y Zhou (2000)
  17. Gale, J, Rohl, A: The general lattice utility program (GULP). Mol Simul. 29, 291 (2003) (10.1080/0892702031000104887) / Mol Simul. by J Gale (2003)
  18. Crozier, PS, Rowley, RL, Henderson, D: Molecular-dynamics simulations of ion size effects on the fluid structure of aqueous electrolyte systems between charged model electrodes. J. Chem. Phys. 114, 7513 (2001) (10.1063/1.1362290) / J. Chem. Phys. by PS Crozier (2001)
  19. Spohr, E, Heinzinger, K: Computer simulations of water and aqueous electrolyte solutions at interfaces. Electrochim. Acta. 33, 1211 (1988) (10.1016/0013-4686(88)80151-8) / Electrochim. Acta. by E Spohr (1988)
  20. Wander, MCF, Shuford, KL: Alkali halide interfacial behavior in a sequence of charged slit pores. J. Phys. Chem. C. 115, 23610 (2011) (10.1021/jp206103w) / J. Phys. Chem. C. by MCF Wander (2011)
  21. Howard, JJ, Perkyns, JS, Pettitt, BM: The behavior of ions near a charged wall - dependence on ion size, concentration, and surface charge. J. Phys. Chem. B. 114, 6074 (2010) (10.1021/jp9108865) / J. Phys. Chem. B. by JJ Howard (2010)
  22. Torrie, GM, Valleau, JP: Electrical double layers. I. Monte Carlo study of a uniformly charged surface. J. Chem. Phys. 73, 5807 (1980) (10.1063/1.440065) / J. Chem. Phys. by GM Torrie (1980)
  23. Zarzycki, P, Rosso, KM: Molecular dynamics simulation of the AgCl/electrolyte interfacial capacity. J. Phys. Chem. C. 114, 10019 (2010) (10.1021/jp100074h) / J. Phys. Chem. C. by P Zarzycki (2010)
  24. Schweighofer, KJ, Xia, X, Berkowitz, ML: Molecular dynamics study of water next to electrified Ag{111} surfaces. Langmuir. 12, 3747 (1996) (10.1021/la951061r) / Langmuir. by KJ Schweighofer (1996)
  25. Spohr, E: Molecular dynamics simulation of water and ion dynamics in the electrochemical double layer. Solid State Ion. 150, 1 (2002) (10.1016/S0167-2738(02)00275-8) / Solid State Ion. by E Spohr (2002)
  26. Bussi, G, Donadio, D, Parrinello, M: Canonical sampling through velocity-rescaling. J. Chem. Phys. 126, 014101 (2007) (10.1063/1.2408420) / J. Chem. Phys. by G Bussi (2007)
  27. Wu, Y, Tepper, HL, Voth, GA: Flexible simple point-charge water model with improved liquid-state properties. J. Chem. Phys. 124, 024503 (2006) (10.1063/1.2136877) / J. Chem. Phys. by Y Wu (2006)
  28. Lee, SH, Rasaiah, JC: Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water. Alkali J Phys. Chem. 100, 1420 (1996) (10.1021/jp953050c) / Alkali J Phys. Chem. by SH Lee (1996)
  29. Michaelides, A, De Ranea, VA, Andres, PL, King, DA: General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys. Rev. Lett. 90, 216102 (2003) (10.1103/PhysRevLett.90.216102) / Phys. Rev. Lett. by A Michaelides (2003)
  30. Tang, QL, Chen, ZX: Density functional slab model studies of water adsorption on flat and stepped Cu surfaces. Surf. Sci. 601, 954 (2007) (10.1016/j.susc.2006.11.036) / Surf. Sci. by QL Tang (2007)
  31. Li, J, Zhu, S, Wang, F: Metals supported water monomers: the bonding nature revisited. J Mater Sci. Technol. 26, 97 (2010) (10.1016/S1005-0302(10)60016-3) / J Mater Sci. Technol. by J Li (2010)
  32. Nadler, R, Sanz, JF: Effect of dispersion correction on the Au{111–H2O interface: A first-principles study. J. Chem. Phys. 137, 114709 (2012) (10.1063/1.4752235) / J. Chem. Phys. by R Nadler (2012)
  33. Toxvaerd, S, Dyre, JC: Communication: Shifted forces in molecular dynamics. J. Chem. Phys. 134, 081102 (2011) (10.1063/1.3558787) / J. Chem. Phys. by S Toxvaerd (2011)
  34. Fennell, CJ, Gezelter, JD: Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 124, 234104 (2006) (10.1063/1.2206581) / J. Chem. Phys. by CJ Fennell (2006)
  35. Spohr, E: Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions. J. Chem. Phys. 107, 6342 (1997) (10.1063/1.474295) / J. Chem. Phys. by E Spohr (1997)
  36. Leiva, EPM, Vázquez, C, Rojas, MI, Mariscal, MM: Computer simulation of the effective double layer occurring on a catalyst surface under electro-chemical promotion conditions. J. Appl. Electrochem. 38, 1065 (2008) (10.1007/s10800-008-9539-x) / J. Appl. Electrochem. by EPM Leiva (2008)
  37. Hansen, JS, Schrøder, TB, Dyre, JC: Simplistic Coulomb forces in molecular dynamics: Comparing the Wolf and shifted-force approximations. J. Phys. Chem. B. 116, 5738 (2012) (10.1021/jp300750g) / J. Phys. Chem. B. by JS Hansen (2012)
  38. Dufner, H, Kast, SM, Brickmann, J, Schlenkrich, M: Ewald summation versus direct summation of shifted force potentials for the calculation of electrostatic interactions in solids: a quantitative study. J. Comput. Chem. 18, 660 (1997) (10.1002/(SICI)1096-987X(19970415)18:5<660::AID-JCC7>3.0.CO;2-L) / J. Comput. Chem. by H Dufner (1997)
  39. Kirkland, E: Image Simulation in Transmission Electron Microscopy. Cornell University, Ithaca (2006) / Image Simulation in Transmission Electron Microscopy by E Kirkland (2006)
  40. Koch, C: Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. Dissertation, Arizona State University (2002)
  41. Ippolito, M, Meloni, S: Atomistic structure of amorphous silicon nitride from classical molecular dynamics simulations. Phys Rev. B. 83, 165209 (2011) (10.1103/PhysRevB.83.165209) / Phys Rev. B. by M Ippolito (2011)
  42. Mkhoyan, KA, Maccagnano-Zacher, SE, Kirkland, EJ, Silcox, J: Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy. 108, 791 (2008) (10.1016/j.ultramic.2008.01.007) / Ultramicroscopy. by KA Mkhoyan (2008)
  43. Boothroyd, CB: Quantification of high-resolution electron microscope images of amorphous carbon. Ultramicroscopy. 83, 159 (2000) (10.1016/S0304-3991(00)00012-7) / Ultramicroscopy. by CB Boothroyd (2000)
  44. Kutty, APG, Vaidya, SN: Mean-square atomic displacements in f.c.c. crystals. J Phys Chem. Solids. 41, 1163 (1980) (10.1016/0022-3697(80)90147-X) / J Phys Chem. Solids. by APG Kutty (1980)
  45. Welch, DA, Faller, R, Evans, JE, Browning, ND: Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy. 135, 36 (2013) (10.1016/j.ultramic.2013.05.010) / Ultramicroscopy. by DA Welch (2013)
  46. Philips JR. ZunZun.com Online Curve Fitting and Surface Fitting Web Site. 2013.
  47. Toukmaji, AY, Board Jr, JA: Ewald summation techniques in perspective: a survey. Comput Phys. Comm. 95, 73 (1996) (10.1016/0010-4655(96)00016-1) / Comput Phys. Comm. by AY Toukmaji (1996)
  48. Fukuda, I, Nakamura, H: Non-Ewald methods: theory and applications to molecular systems. Biophys. Rev. 4, 161 (2012) (10.1007/s12551-012-0089-4) / Biophys. Rev. by I Fukuda (2012)
Dates
Type When
Created 10 years, 5 months ago (March 5, 2015, 8:50 p.m.)
Deposited 4 years, 1 month ago (July 30, 2021, 4:01 a.m.)
Indexed 1 week, 4 days ago (Aug. 19, 2025, 6:48 a.m.)
Issued 10 years, 5 months ago (March 25, 2015)
Published 10 years, 5 months ago (March 25, 2015)
Published Online 10 years, 5 months ago (March 25, 2015)
Published Print 9 years, 8 months ago (Dec. 1, 2015)
Funders 0

None

@article{Welch_2015, title={Using molecular dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM}, volume={1}, ISSN={2198-0926}, url={http://dx.doi.org/10.1186/s40679-014-0002-2}, DOI={10.1186/s40679-014-0002-2}, number={1}, journal={Advanced Structural and Chemical Imaging}, publisher={Springer Science and Business Media LLC}, author={Welch, David A and Mehdi, B Layla and Hatchell, Hannah J and Faller, Roland and Evans, James E and Browning, Nigel D}, year={2015}, month=mar }