Crossref journal-article
Springer Science and Business Media LLC
Journal of Cheminformatics (297)
Bibliography

Haunschild, R., Barth, A., & Marx, W. (2016). Evolution of DFT studies in view of a scientometric perspective. Journal of Cheminformatics, 8(1).

Authors 3
  1. Robin Haunschild (first)
  2. Andreas Barth (additional)
  3. Werner Marx (additional)
References 66 Referenced 45
  1. Schrodinger E (1926) Quantisation as an eigen value problem. Ann Phys 79:U361–U368 (10.1002/andp.19263840404) / Ann Phys by E Schrodinger (1926)
  2. Schrodinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070. doi: 10.1103/PhysRev.28.1049 (10.1103/PhysRev.28.1049) / Phys Rev by E Schrodinger (1926)
  3. Dirac PAM (1928) The quantum theory of the electron. Proc R Soc Lond Ser A Contain Pap Math Phys Character 117:610–624. doi: 10.1098/rspa.1928.0023 (10.1098/rspa.1928.0023) / Proc R Soc Lond Ser A Contain Pap Math Phys Character by PAM Dirac (1928)
  4. Dirac PAM (1928) The quantum theory of the electron—part II. Proc R Soc Lond Ser A Contain Pap Math Phys Character 118:351–361. doi: 10.1098/rspa.1928.0056 (10.1098/rspa.1928.0056) / Proc R Soc Lond Ser A Contain Pap Math Phys Character by PAM Dirac (1928)
  5. Dirac PAM (1928) On the quantum theory of electrons. Physikalische Zeitschrift 29:561–563 / Physikalische Zeitschrift by PAM Dirac (1928)
  6. Thomas LH (1927) The calculation of atomic fields. Proc Camb Philos Soc 23:542–548 (10.1017/S0305004100011683) / Proc Camb Philos Soc by LH Thomas (1927)
  7. Fermi E (1928) A statistical method for determining some properties of the atoms and its application to the theory of the periodic table of elements. Z Angew Phys 48:73–79. doi: 10.1007/bf01351576 (10.1007/bf01351576) / Z Angew Phys by E Fermi (1928)
  8. Slater JC (1951) A simplification of the Hartree–Fock method. Phys Rev 81:385–390. doi: 10.1103/PhysRev.81.385 (10.1103/PhysRev.81.385) / Phys Rev by JC Slater (1951)
  9. Hartree DR, Hartree FRS, Hartree W (1935) Self-consistent field, with exchange, for beryllium. Proce R Soc Lond Ser Math Phys Sci 150:0009–0033. doi: 10.1098/rspa.1935.0085 (10.1098/rspa.1935.0085) / Proce R Soc Lond Ser Math Phys Sci by DR Hartree (1935)
  10. Fock V (1930) Approximation method for the solution of the quantum mechanical multibody problems. Z Angew Phys 61:126–148. doi: 10.1007/bf01340294 (10.1007/bf01340294) / Z Angew Phys by V Fock (1930)
  11. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864. doi: 10.1103/PhysRev.136.B864 (10.1103/PhysRev.136.B864) / Phys Rev B by P Hohenberg (1964)
  12. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133 (10.1103/PhysRev.140.A1133) / Phys Rev by W Kohn (1965)
  13. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can J Phys 58:1200–1211 (10.1139/p80-159) / Can J Phys by SH Vosko (1980)
  14. Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33:8822–8824. doi: 10.1103/PhysRevB.33.8822 (10.1103/PhysRevB.33.8822) / Phys Rev B by JP Perdew (1986)
  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 (10.1103/PhysRevLett.77.3865) / Phys Rev Lett by JP Perdew (1996)
  16. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100. doi: 10.1103/PhysRevA.38.3098 (10.1103/PhysRevA.38.3098) / Phys Rev A by AD Becke (1988)
  17. Lee CT, Yang WT, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 (10.1103/PhysRevB.37.785) / Phys Rev B by CT Lee (1988)
  18. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett. doi: 10.1103/PhysRevLett.91.146401 (10.1103/PhysRevLett.91.146401) / Phys Rev Lett by JM Tao (2003)
  19. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys Rev Lett 82:2544–2547. doi: 10.1103/PhysRevLett.82.2544 (10.1103/PhysRevLett.82.2544) / Phys Rev Lett by JP Perdew (1999)
  20. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:18. doi: 10.1063/1.2370993 (10.1063/1.2370993) / J Chem Phys by Y Zhao (2006)
  21. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 (10.1063/1.464913) / J Chem Phys by AD Becke (1993)
  22. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. doi: 10.1063/1.478522 (10.1063/1.478522) / J Chem Phys by C Adamo (1999)
  23. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:4. doi: 10.1063/1.2126975 (10.1063/1.2126975) / J Chem Phys by Y Zhao (2005)
  24. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382. doi: 10.1021/ct0502763 (10.1021/ct0502763) / J Chem Theory Comput by Y Zhao (2006)
  25. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi: 10.1063/1.464304 (10.1063/1.464304) / J Chem Phys by AD Becke (1993)
  26. Perdew JP, Emzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985. doi: 10.1063/1.472933 (10.1063/1.472933) / J Chem Phys by JP Perdew (1996)
  27. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. doi: 10.1063/1.1564060 (10.1063/1.1564060) / J Chem Phys by J Heyd (2003)
  28. Heyd J, Scuseria GE, Ernzerhof M (2006) Hybrid functionals based on a screened Coulomb potential (vol 118, pg 8207, 2003). J Chem Phys. doi: 10.1063/1.2204597 (10.1063/1.2204597) / J Chem Phys by J Heyd (2006)
  29. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. doi: 10.1016/j.cplett.2004.06.011 (10.1016/j.cplett.2004.06.011) / Chem Phys Lett by T Yanai (2004)
  30. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817. doi: 10.1021/jz201170d (10.1021/jz201170d) / J Phys Chem Lett by R Peverati (2011)
  31. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:15. doi: 10.1063/1.2834918 (10.1063/1.2834918) / J Chem Phys by JD Chai (2008)
  32. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) A long-range correction scheme for generalized-gradient-approximation exchange functionals. J Chem Phys 115:3540–3544. doi: 10.1063/1.1383587 (10.1063/1.1383587) / J Chem Phys by H Iikura (2001)
  33. Song JW, Watson MA, Hirao K (2009) An improved long-range corrected hybrid functional with vanishing Hartree–Fock exchange at zero interelectronic distance, LC2gau-BOP. J Chem Phys 131:9. doi: 10.1063/1.3243819 (10.1063/1.3243819) / J Chem Phys by JW Song (2009)
  34. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys. doi: 10.1063/1.2409292 (10.1063/1.2409292) / J Chem Phys by OA Vydrov (2006)
  35. Jaramillo J, Scuseria GE, Ernzerhof M (2003) Local hybrid functionals. J Chem Phys 118:1068–1073. doi: 10.1063/1.1528936 (10.1063/1.1528936) / J Chem Phys by J Jaramillo (2003)
  36. Arbuznikov AV, Kaupp M (2008) What can we learn from the adiabatic connection formalism about local hybrid functionals? J Chem Phys. doi: 10.1063/1.2920196 (10.1063/1.2920196) / J Chem Phys by AV Arbuznikov (2008)
  37. Bahmann H, Rodenberg A, Arbuznikov AV, Kaupp M (2007) A thermochemically competitive local hybrid functional without gradient corrections. J Chem Phys. doi: 10.1063/1.2429058 (10.1063/1.2429058) / J Chem Phys by H Bahmann (2007)
  38. Haunschild R, Janesko BG, Scuseria GE (2009) Local hybrids as a perturbation to global hybrid functionals. J Chem Phys. doi: 10.1063/1.3247288 (10.1063/1.3247288) / J Chem Phys by R Haunschild (2009)
  39. Janesko BG, Scuseria GE (2007) Local hybrid functionals based on density matrix products. J Chem Phys. doi: 10.1063/1.2784406 (10.1063/1.2784406) / J Chem Phys by BG Janesko (2007)
  40. Janesko BG, Scuseria GE (2008) Parameterized local hybrid functionals from density-matrix similarity metrics. J Chem Phys. doi: 10.1063/1.2831556 (10.1063/1.2831556) / J Chem Phys by BG Janesko (2008)
  41. Johnson ER (2014) Local-hybrid functional based on the correlation length. J Chem Phys. doi: 10.1063/1.4896302 (10.1063/1.4896302) / J Chem Phys by ER Johnson (2014)
  42. Haunschild R, Scuseria GE (2010) Range-separated local hybrids. J Chem Phys. doi: 10.1063/1.3451078 (10.1063/1.3451078) / J Chem Phys by R Haunschild (2010)
  43. Henderson TM, Janesko BG, Scuseria GE, Savin A (2009) Locally range-separated hybrids as linear combinations of range-separated local hybrids. Int J Quantum Chem 109:2023–2032. doi: 10.1002/qua.22049 (10.1002/qua.22049) / Int J Quantum Chem by TM Henderson (2009)
  44. Arbuznikov AV, Kaupp M (2012) Importance of the correlation contribution for local hybrid functionals: range separation and self-interaction corrections. J Chem Phys 136:13. doi: 10.1063/1.3672080 (10.1063/1.3672080) / J Chem Phys by AV Arbuznikov (2012)
  45. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys. doi: 10.1063/1.2148954 (10.1063/1.2148954) / J Chem Phys by S Grimme (2006)
  46. Hedegard ED, Heiden F, Knecht S, Fromager E, Jensen HJA (2013) Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. J Chem Phys 139:13. doi: 10.1063/1.4826533 (10.1063/1.4826533) / J Chem Phys by ED Hedegard (2013)
  47. Janesko BG, Henderson TM, Scuseria GE (2009) Long-range-corrected hybrids including random phase approximation correlation. J Chem Phys. doi: 10.1063/1.3090814 (10.1063/1.3090814) / J Chem Phys by BG Janesko (2009)
  48. Furche F (2008) Developing the random phase approximation into a practical post-Kohn-Sham correlation model. J Chem Phys. doi: 10.1063/1.2977789 (10.1063/1.2977789) / J Chem Phys by F Furche (2008)
  49. Furche F, Van Voorhis T (2005) Fluctuation-dissipation theorem density-functional theory. J Chem Phys 122:10. doi: 10.1063/1.1884112 (10.1063/1.1884112) / J Chem Phys by F Furche (2005)
  50. Eshuis H, Furche F (2011) A parameter-free density functional that works for noncovalent interactions. J Phys Chem Lett 2:983–989. doi: 10.1021/jz200238f (10.1021/jz200238f) / J Phys Chem Lett by H Eshuis (2011)
  51. Goll E, Werner HJ, Stoll H (2005) A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. Phys Chem Chem Phys 7:3917–3923. doi: 10.1039/b509242f (10.1039/b509242f) / Phys Chem Chem Phys by E Goll (2005)
  52. Goll E, Werner HJ, Stoll H, Leininger T, Gori-Giorgi P, Savin A (2006) A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: application to alkali-metal rare-gas dimers. Chem Phys 329:276–282. doi: 10.1016/j.chemphys.2006.05.020 (10.1016/j.chemphys.2006.05.020) / Chem Phys by E Goll (2006)
  53. Garza AJ, Bulik IW, Henderson TM, Scuseria GE (2015) Range separated hybrids of pair coupled cluster doubles and density functionals. Phys Chem Chem Phys 17:22412–22422. doi: 10.1039/c5cp02773j (10.1039/C5CP02773J) / Phys Chem Chem Phys by AJ Garza (2015)
  54. Goerigk L, Grimme S (2014) Double-hybrid density functionals. Wiley Interdiscip Rev Comput Mol Sci 4:576–600. doi: 10.1002/wcms.1193 (10.1002/wcms.1193) / Wiley Interdiscip Rev Comput Mol Sci by L Goerigk (2014)
  55. Chai JD, Head-Gordon M (2009) Long-range corrected double-hybrid density functionals. J Chem Phys 131:13. doi: 10.1063/1.3244209 (10.1063/1.3244209) / J Chem Phys by JD Chai (2009)
  56. Burke K (2012) Perspective on density functional theory. J Chem Phys. doi: 10.1063/1.4704546 (10.1063/1.4704546) / J Chem Phys by K Burke (2012)
  57. Pribram-Jones A, Gross DA, Burke K (2015) DFT: a theory full of holes? In: Johnson MA, Martinez TJ (eds) Ann Rev Phys Chem 66:283–304. doi: 10.1146/annurev-physchem-040214-121420 (10.1146/annurev-physchem-040214-121420)
  58. Abbott A, Cyranoski D, Jones N, Maher B, Schiermeier Q, Van Noorden R (2010) Do metrics matter? Nature 465:860–862. doi: 10.1038/465860a (10.1038/465860a) / Nature by A Abbott (2010)
  59. Van Noorden R (2010) A profusion of measures. Nature 465:864–866. doi: 10.1038/465864a (10.1038/465864a) / Nature by R Noorden Van (2010)
  60. Barth A, Marx W (2012) Stimulation of Ideas through compound-based bibliometrics: counting and mapping chemical compounds for analyzing research topics in chemistry, physics, and materials science. Chemistryopen 1:276–283. doi: 10.1002/open.201200029 (10.1002/open.201200029) / Chemistryopen by A Barth (2012)
  61. Marx W, Bornmann L, Barth A, Leydesdorff L (2014) Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS). J Assoc Inf Sci Technol 65:751–764. doi: 10.1002/asi.23089 (10.1002/asi.23089) / J Assoc Inf Sci Technol by W Marx (2014)
  62. Goedecke C, Hillebrecht P, Uhlemann T, Haunschild R, Frenking G (2009) The Dewar–Chatt–Duncanson model reversed - Bonding analysis of group-10 complexes (PMe3)(2)M-EX3 (M = Ni, Pd, Pt; E = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I). Can J Chem Rev Can Chim 87:1470–1479. doi: 10.1139/v09-099 (10.1139/V09-099) / Can J Chem Rev Can Chim by C Goedecke (2009)
  63. Thor A, Marx W, Leydesdorff L, Bornmann L (2016) Introducing CitedReferencesExplorer (CRExplorer): a program for reference publication year spectroscopy with cited references disambiguation. http://arxiv.org/abs/1601.01199 . Accessed 1 Oct 2016 (10.1016/j.joi.2016.02.005)
  64. Haunschild R, Bornmann L, Marx W (2016) Climate change research in view of bibliometrics. PLoS ONE 11(7):e0160393. doi: 10.1371/journal.pone.0160393 (10.1371/journal.pone.0160393) / PLoS ONE by R Haunschild (2016)
  65. Noel Y, De La Pierre M, Zicovich-Wilson CM, Orlando R, Dovesi R (2014) Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Phys Chem Chem Phys 16:13390–13401. doi: 10.1039/c4cp01442a (10.1039/c4cp01442a) / Phys Chem Chem Phys by Y Noel (2014)
  66. Holec D, Hartmann MA, Fischer FD, Rammerstorfer FG, Mayrhofer PH, Paris O (2010) Curvature-induced excess surface energy of fullerenes: density functional theory and Monte Carlo simulations. Phys Rev B. doi: 10.1103/PhysRevB.81.235403 (10.1103/PhysRevB.81.235403) / Phys Rev B by D Holec (2010)
Dates
Type When
Created 8 years, 10 months ago (Oct. 5, 2016, 12:06 p.m.)
Deposited 6 years, 2 months ago (June 24, 2019, 10:18 a.m.)
Indexed 4 weeks, 1 day ago (Aug. 6, 2025, 8:17 a.m.)
Issued 8 years, 10 months ago (Oct. 5, 2016)
Published 8 years, 10 months ago (Oct. 5, 2016)
Published Online 8 years, 10 months ago (Oct. 5, 2016)
Published Print 8 years, 9 months ago (Dec. 1, 2016)
Funders 0

None

@article{Haunschild_2016, title={Evolution of DFT studies in view of a scientometric perspective}, volume={8}, ISSN={1758-2946}, url={http://dx.doi.org/10.1186/s13321-016-0166-y}, DOI={10.1186/s13321-016-0166-y}, number={1}, journal={Journal of Cheminformatics}, publisher={Springer Science and Business Media LLC}, author={Haunschild, Robin and Barth, Andreas and Marx, Werner}, year={2016}, month=oct }