Crossref journal-article
Springer Science and Business Media LLC
BMC Biology (297)
Bibliography

Bichet, M., Touquet, B., Gonzalez, V., Florent, I., Meissner, M., & Tardieux, I. (2016). Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces. BMC Biology, 14(1).

Authors 6
  1. Marion Bichet (first)
  2. Bastien Touquet (additional)
  3. Virginie Gonzalez (additional)
  4. Isabelle Florent (additional)
  5. Markus Meissner (additional)
  6. Isabelle Tardieux (additional)
References 56 Referenced 35
  1. Hänisch J, Stradal TEB, Rottner K. A novel contractility pathway operating in Salmonella invasion. Virulence. 2012;3:81–6. (10.4161/viru.3.1.18454) / Virulence by J Hänisch (2012)
  2. Swanson JA. Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol. 2008;9:639–49. (10.1038/nrm2447) / Nat Rev Mol Cell Biol by JA Swanson (2008)
  3. Cossart P, Helenius A. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol. 2014;6. doi: 10.1101/cshperspect.a016972 . (10.1101/cshperspect.a016972)
  4. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43. (10.1038/icb.2011.20) / Immunol Cell Biol by JP Lim (2011)
  5. Morisaki JH, Heuser JE, Sibley LD. Invasion of Toxoplasma gondii occurs by active penetration of the host cell. J Cell Sci. 1995;108(Pt 6):2457–64. (10.1242/jcs.108.6.2457) / J Cell Sci by JH Morisaki (1995)
  6. Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996;84:933–9. (10.1016/S0092-8674(00)81071-5) / Cell by JM Dobrowolski (1996)
  7. Dobrowolski JM, Carruthers VB, Sibley LD. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol. 1997;26:163–73. (10.1046/j.1365-2958.1997.5671913.x) / Mol Microbiol by JM Dobrowolski (1997)
  8. Meissner M, Schlüter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science. 2002;298:837–40. (10.1126/science.1074553) / Science by M Meissner (2002)
  9. Sidik SM, Huet D, Ganesan SM, Huynh M-H, Wang T, Nasamu AS, et al. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell. 2016;166:1423–35. e12. (10.1016/j.cell.2016.08.019) / Cell by SM Sidik (2016)
  10. Lebrun M, Michelin A, El Hajj H, Poncet J, Bradley PJ, Vial H, et al. The rhoptry neck protein RON4 re-localizes at the moving junction during Toxoplasma gondii invasion. Cell Microbiol. 2005;7:1823–33. (10.1111/j.1462-5822.2005.00646.x) / Cell Microbiol by M Lebrun (2005)
  11. Besteiro S, Michelin A, Poncet J, Dubremetz J-F, Lebrun M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog. 2009;5:e1000309. (10.1371/journal.ppat.1000309) / PLoS Pathog by S Besteiro (2009)
  12. Besteiro S, Dubremetz J-F, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol. 2011;13:797–805. (10.1111/j.1462-5822.2011.01597.x) / Cell Microbiol by S Besteiro (2011)
  13. Bargieri D, Lagal V, Andenmatten N, Tardieux I, Meissner M, Ménard R. Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog. 2014;10:e1004273. (10.1371/journal.ppat.1004273) / PLoS Pathog by D Bargieri (2014)
  14. Suss-Toby E, Zimmerberg J, Ward GE. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci U S A. 1996;93:8413–8. (10.1073/pnas.93.16.8413) / Proc Natl Acad Sci U S A by E Suss-Toby (1996)
  15. Mordue DG, Håkansson S, Niesman I, Sibley LD. Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol. 1999;92:87–99. (10.1006/expr.1999.4412) / Exp Parasitol by DG Mordue (1999)
  16. Gonzalez V, Combe A, David V, Malmquist NA, Delorme V, Leroy C, et al. Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe. 2009;5:259–72. (10.1016/j.chom.2009.01.011) / Cell Host Microbe by V Gonzalez (2009)
  17. Bichet M, Joly C, Henni AH, Guilbert T, Xémard M, Tafani V, et al. The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force. BMC Biol. 2014;12:773. (10.1186/s12915-014-0108-y) / BMC Biol by M Bichet (2014)
  18. Herm-Götz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhöfer E, et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. EMBO J. 2002;21:2149–58. (10.1093/emboj/21.9.2149) / EMBO J by A Herm-Götz (2002)
  19. Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A. 2006;103:3681–6. (10.1073/pnas.0506307103) / Proc Natl Acad Sci U S A by BJ Foth (2006)
  20. Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, et al. The toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PLoS One. 2014;9:e91819. (10.1371/journal.pone.0091819) / PLoS One by S Egarter (2014)
  21. Frénal K, Marq J-B, Jacot D, Polonais V, Soldati-Favre D. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLoS Pathog. 2014;10:e1004504. (10.1371/journal.ppat.1004504) / PLoS Pathog by K Frénal (2014)
  22. Zhao Y, Marple AH, Ferguson DJP, Bzik DJ, Yap GS. Avirulent strains of Toxoplasma gondii infect macrophages by active invasion from the phagosome. Proc Natl Acad Sci U S A. 2014;111:6437–42. (10.1073/pnas.1316841111) / Proc Natl Acad Sci U S A by Y Zhao (2014)
  23. Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman J-P, Meissner M. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nat Methods. 2013;10:125–7. (10.1038/nmeth.2301) / Nat Methods by N Andenmatten (2013)
  24. Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol. 2009;11:510–20. (10.1038/ncb0509-510) / Nat Cell Biol by J Mercer (2009)
  25. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, et al. Lifeact: a versatile marker to visualize F-actin. Nat Methods. 2008;5:605–7. (10.1038/nmeth.1220) / Nat Methods by J Riedl (2008)
  26. Peng GE, Wilson SR, Weiner OD. A pharmacological cocktail for arresting actin dynamics in living cells. Mol Biol Cell. 2011;22:3986–94. (10.1091/mbc.E11-04-0379) / Mol Biol Cell by GE Peng (2011)
  27. Bubb MR, Spector I, Beyer BB, Fosen KM. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem. 2000;275:5163–70. (10.1074/jbc.275.7.5163) / J Biol Chem by MR Bubb (2000)
  28. Kiuchi T, Nagai T, Ohashi K, Mizuno K. Measurements of spatiotemporal changes in G-actin concentration reveal its effect on stimulus-induced actin assembly and lamellipodium extension. J Cell Biol. 2011;193:365–80. (10.1083/jcb.201101035) / J Cell Biol by T Kiuchi (2011)
  29. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science. 2003;299:1743–7. (10.1126/science.1081412) / Science by AF Straight (2003)
  30. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4. (10.1038/40187) / Nature by M Uehata (1997)
  31. Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun. 2015;6:8623. (10.1038/ncomms9623) / Nat Commun by D Schlam (2015)
  32. Araki N, Hatae T, Furukawa A, Swanson JA. Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages. J Cell Sci. 2003;116:247–57. (10.1242/jcs.00235) / J Cell Sci by N Araki (2003)
  33. Araki N, Egami Y, Watanabe Y, Hatae T. Phosphoinositide metabolism during membrane ruffling and macropinosome formation in EGF-stimulated A431 cells. Exp Cell Res. 2007;313:1496–507. (10.1016/j.yexcr.2007.02.012) / Exp Cell Res by N Araki (2007)
  34. Welliver TP, Swanson JA. A growth factor signaling cascade confined to circular ruffles in macrophages. Biol Open. 2012;1:754–60. (10.1242/bio.20121784) / Biol Open by TP Welliver (2012)
  35. Yoshida S, Gaeta I, Pacitto R, Krienke L, Alge O, Gregorka B, et al. Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages. Front Physiol. 2015. doi: 10.3389/fphys.2015.00008 . Accessed 11 Apr 2016. (10.3389/fphys.2015.00008)
  36. Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis: regulated coordination of endocytic and exocytic membrane traffic events. J Cell Sci. 2006;119:4758–69. (10.1242/jcs.03238) / J Cell Sci by S Falcone (2006)
  37. Beckers CJ, Dubremetz JF, Mercereau-Puijalon O, Joiner KA. The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm. J Cell Biol. 1994;127:947–61. (10.1083/jcb.127.4.947) / J Cell Biol by CJ Beckers (1994)
  38. Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N. A contractile activity that closes phagosomes in macrophages. J Cell Sci. 1999;112(Pt 3):307–16. (10.1242/jcs.112.3.307) / J Cell Sci by JA Swanson (1999)
  39. Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta. 2015;1851:805–23. (10.1016/j.bbalip.2014.09.005) / Biochim Biophys Acta by R Levin (2015)
  40. Rassokhin MA, Pakhomov AG. Cellular regulation of extension and retraction of pseudopod-like blebs produced by nanosecond pulsed electric field (nsPEF). Cell Biochem Biophys. 2014;69:555–66. (10.1007/s12013-014-9831-9) / Cell Biochem Biophys by MA Rassokhin (2014)
  41. Swanson JA. Phosphoinositides and engulfment. Cell Microbiol. 2014;16:1473–83. (10.1111/cmi.12334) / Cell Microbiol by JA Swanson (2014)
  42. Figard L, Sokac AM. A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change. Bioarchitecture. 2014;4:39–46. (10.4161/bioa.29069) / Bioarchitecture by L Figard (2014)
  43. Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev. 2013;256:222–39. (10.1111/imr.12118) / Immunol Rev by P Rougerie (2013)
  44. McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 2005;438:590–6. (10.1038/nature04396) / Nature by HT McMahon (2005)
  45. Gaji RY, Huynh M-H, Carruthers VB. A novel high throughput invasion screen identifies host actin regulators required for efficient cell entry by Toxoplasma gondii. PLoS One. 2013;8:e64693. (10.1371/journal.pone.0064693) / PLoS One by RY Gaji (2013)
  46. Delorme-Walker V, Abrivard M, Lagal V, Anderson K, Perazzi A, Gonzalez V, et al. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. J Cell Sci. 2012;125:4333–42. (10.1242/jcs.103648) / J Cell Sci by V Delorme-Walker (2012)
  47. Ferguson DJ, Hutchison WM, Siim JC. Proceedings: comparison of the methods of asexual multiplication undergone by Toxoplasma gondii. Parasitology. 1974;69:xiii.
  48. Meissner M, Ferguson DJP, Frischknecht F. Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol. 2013;16:438–44. (10.1016/j.mib.2013.05.002) / Curr Opin Microbiol by M Meissner (2013)
  49. MacLaren A, Attias M, de Souza W. Aspects of the early moments of interaction between tachyzoites of Toxoplasma gondii with neutrophils. Vet Parasitol. 2004;125:301–12. (10.1016/j.vetpar.2004.07.006) / Vet Parasitol by A MacLaren (2004)
  50. Suhonen J, Hartiala K, Viljanen MK. Tube phagocytosis, a novel way for neutrophils to Phagocytize borrelia burgdorferi. Infect Immun. 1998;66:3433–5. (10.1128/IAI.66.7.3433-3435.1998) / Infect Immun by J Suhonen (1998)
  51. Hallett MB, Dewitt S. Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol. 2007;17:209–14. (10.1016/j.tcb.2007.03.002) / Trends Cell Biol by MB Hallett (2007)
  52. Dasgupta S, Auth T, Gov NS, Satchwell TJ, Hanssen E, Zuccala ES, et al. Membrane-wrapping contributions to malaria parasite invasion of the human erythrocyte. Biophys J. 2014;107:43–54. (10.1016/j.bpj.2014.05.024) / Biophys J by S Dasgupta (2014)
  53. Crick AJ, Theron M, Tiffert T, Lew VL, Cicuta P, Rayner JC. Quantitation of malaria parasite-erythrocyte cell-cell interactions using optical tweezers. Biophys J. 2014;107:846–53. (10.1016/j.bpj.2014.07.010) / Biophys J by AJ Crick (2014)
  54. Opitz C, Soldati D. “The glideosome”: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol. 2002;45:597–604. (10.1046/j.1365-2958.2002.03056.x) / Mol Microbiol by C Opitz (2002)
  55. Delorme V, Cayla X, Faure G, Garcia A, Tardieux I. Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. Mol Biol Cell. 2003;14:1900–12. (10.1091/mbc.E02-08-0462) / Mol Biol Cell by V Delorme (2003)
  56. Commisso C, Flinn RJ, Bar-Sagi D. Determining the macropinocytic index of cells through a quantitative image-based assay. Nat Protoc. 2014;9:182–92. (10.1038/nprot.2014.004) / Nat Protoc by C Commisso (2014)
Dates
Type When
Created 8 years, 9 months ago (Nov. 9, 2016, 4:23 a.m.)
Deposited 3 years, 1 month ago (July 12, 2022, 6:34 p.m.)
Indexed 2 weeks, 3 days ago (Aug. 12, 2025, 6:11 p.m.)
Issued 8 years, 9 months ago (Nov. 9, 2016)
Published 8 years, 9 months ago (Nov. 9, 2016)
Published Online 8 years, 9 months ago (Nov. 9, 2016)
Published Print 8 years, 8 months ago (Dec. 1, 2016)
Funders 1
  1. Fondation pour la Recherche Médicale 10.13039/501100002915

    Region: Europe

    pri (Trusts, charities, foundations (both public and private))

    Labels2
    1. Foundation for Medical Research
    2. FRM
    Awards1
    1. DEQ20100318279

@article{Bichet_2016, title={Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces}, volume={14}, ISSN={1741-7007}, url={http://dx.doi.org/10.1186/s12915-016-0316-8}, DOI={10.1186/s12915-016-0316-8}, number={1}, journal={BMC Biology}, publisher={Springer Science and Business Media LLC}, author={Bichet, Marion and Touquet, Bastien and Gonzalez, Virginie and Florent, Isabelle and Meissner, Markus and Tardieux, Isabelle}, year={2016}, month=nov }