Crossref journal-article
Springer Science and Business Media LLC
Microbial Cell Factories (297)
Abstract

Abstract Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical detection are discussed.

Bibliography

Gabig-Ciminska, M. (2006). Developing nucleic acid-based electrical detection systems. Microbial Cell Factories, 5(1).

Authors 1
  1. Magdalena Gabig-Ciminska (first)
References 61 Referenced 49
  1. Gabig M, Wegrzyn G: An introduction to DNA chips: principles, technology, applications and analysis. Acta Biochim Pol. 2001, 48: 615-622. (10.18388/abp.2001_3896) / Acta Biochim Pol by M Gabig (2001)
  2. Gabig-Ciminska M, Ciminski A: Molecular Analysis and Genome Discovery: An Introduction to DNA Chips. 2003, Wiley & Sons, Ltd., Chichester / Molecular Analysis and Genome Discovery: An Introduction to DNA Chips by M Gabig-Ciminska (2003)
  3. Ramsey M: DNA chips: state-of-the-art. Nat Biotechnol. 1998, 16: 40-44. (10.1038/nbt0198-40) / Nat Biotechnol by M Ramsey (1998)
  4. Aoki H, Umezawa Y: High Sensitive Ion-Channel Sensors for Detection of Oligonucleotides Using PNA Modified Gold Electrodes. Electroanal. 2002, 14: 1405-1410. (10.1002/1521-4109(200211)14:19/20<1405::AID-ELAN1405>3.0.CO;2-G) / Electroanal by H Aoki (2002)
  5. Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR: Electronic detection of DNA by its intrinsic molecular charge. Proc Natl Acad Sci. 2002, 99: 14142-14146. (10.1073/pnas.232276699) / Proc Natl Acad Sci by J Fritz (2002)
  6. Drummond TG, Hill MG, Barton JK: Electrochemical DNA sensors. Nat Biotechnol. 2003, 21: 1192-1199. (10.1038/nbt873) / Nat Biotechnol by TG Drummond (2003)
  7. Kerman K, Kobayashi M, Tamiya E: Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol. 2004, 15: 1-11. (10.1088/0957-0233/15/2/R01) / Meas Sci Technol by K Kerman (2004)
  8. Lucarelli F, Marrazza G, Turner APF, Mascini M: Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens Bioelectron. 2004, 19: 515-530. (10.1016/S0956-5663(03)00256-2) / Biosens Bioelectron by F Lucarelli (2004)
  9. Hartley HA, Baeumner AJ: Biosensor for the specific detection of a single viable B. anthracis spore. Anal Bioanal Chem. 2003, 376: 319-327. (10.1007/s00216-003-1939-5) / Anal Bioanal Chem by HA Hartley (2003)
  10. Grow AE, Wood LL, Claycomb JL, Thompon PA: New biochip technology for label-free detection of pathogens and their toxins. J Microbial Methods. 2003, 53: 221-233. (10.1016/S0167-7012(03)00026-5) / J Microbial Methods by AE Grow (2003)
  11. Gabig-Ciminska M, Andresen H, Albers J, Hintsche R, Enfors S-O: Identification of pathogenic microbial cells and spores by electrochemical detection on a chip. Microbial Cell Factories. 2004, 3: 2- (10.1186/1475-2859-3-2) / Microbial Cell Factories by M Gabig-Ciminska (2004)
  12. Deisingh AK, Thompson M: Biosensors for detection of bacteria. Can J Microbiol. 2004, 50: 69-77. (10.1139/w03-095) / Can J Microbiol by AK Deisingh (2004)
  13. Metfies K, Huljic S, Lange M, Medlin LK: Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron. 2005, 20: 1349-1357. (10.1016/j.bios.2004.05.011) / Biosens Bioelectron by K Metfies (2005)
  14. Cook N: The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbial Methods. 2003, 53: 165-174. (10.1016/S0167-7012(03)00022-8) / J Microbial Methods by N Cook (2003)
  15. Sergeev N, Distler M, Courtney S, Al-Khaldi SF, Volokhov D, Chizhikov V, Rasooly A: Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron. 2004, 20: 684-698. (10.1016/j.bios.2004.04.030) / Biosens Bioelectron by N Sergeev (2004)
  16. Buchanan RL, Schulttz FJ: Comparison of the Tecra VIA Kit, Oxoid BCET-REPLA kit and CHO cell culture assay for the detection of Bacillus cereus diarrhoeal enterotoxin. Lett Appl Microbiol. 1994, 19: 353-356. (10.1111/j.1472-765X.1994.tb00473.x) / Lett Appl Microbiol by RL Buchanan (1994)
  17. Day TL, Tatani SR, Notermans S, Bennnett RW: A comparison of ELISA and RPLA for detection of Bacillus cereus diarrhoeal enterotoxin. J Appl Bacteriol. 1994, 77: 9-13. (10.1111/j.1365-2672.1994.tb03037.x) / J Appl Bacteriol by TL Day (1994)
  18. David A, Novis A, Jane CD, Ron BS, Stephen GR, Molly KW: Solitary blood cultures. Arch Pathol Lab Med. 2001, 125: 1290-1294. (10.5858/2001-125-1290-SBC) / Arch Pathol Lab Med by A David (2001)
  19. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E, Stricker S: Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanal. 2000, 12: 317-325. (10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A) / Electroanal by D Ivnitski (2000)
  20. Kim YR, Czajka J, Batt CA: Development of a fluorogenic probe-based PCR assay for detection of Bacillus cereus in nonfat dry milk. Appl Environ Microbiol. 2000, 66: 1453-1459. (10.1128/AEM.66.4.1453-1459.2000) / Appl Environ Microbiol by YR Kim (2000)
  21. Petrenko VA, Vodyanoy VJ: Phage display for detection of biological threat agents. J Microbiol Methods. 2003, 53: 253-262. (10.1016/S0167-7012(03)00029-0) / J Microbiol Methods by VA Petrenko (2003)
  22. Wang J: Nanoparticle-based electrochemical DNA detection. Anal Chim Acta. 2003, 500: 247-257. (10.1016/S0003-2670(03)00725-6) / Anal Chim Acta by J Wang (2003)
  23. Marchand G, Delattre C, Campagnolo R, Pouteau P, Ginot F: Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets. Anal Chem. 2005, 77: 5189-5195. (10.1021/ac0505066) / Anal Chem by G Marchand (2005)
  24. Berggren Ch, Bjarnason B, Johansson G: Capacitive biosensors. Electroanal. 2001, 13: 173-180. (10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B) / Electroanal by Ch Berggren (2001)
  25. Mallard F, Marchand G, Ginot F, Campagnolo R: Opto-electronic DNA chip: high performance chip reading with an all-electric interface. Biosens Bioelectron. 2005, 20: 1813-1820. (10.1016/j.bios.2004.07.031) / Biosens Bioelectron by F Mallard (2005)
  26. Akhavan-Taftia H, Reddy LV, Siripurapu S, Schoenfelner BA, Handley RS, Schaap AP: Chemiluminescent Detection of DNA in Low- and Medium-Density Arrays. Clin Chem. 1998, 44: 2065-2066. (10.1093/clinchem/44.9.2065) / Clin Chem by H Akhavan-Taftia (1998)
  27. Perraut F, Lagrange A, Pouteau P, Peysonneaux O, Puget P, Mc Gall P, Menou L, Gonzalez R, Labeye P, Ginot F: A new generation of scanners for DNA chips. Biosens Bioelectron. 2002, 17: 803-813. (10.1016/S0956-5663(02)00073-8) / Biosens Bioelectron by F Perraut (2002)
  28. Palecek E: Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature. 1960, 188: 656-657. (10.1038/188656a0) / Nature by E Palecek (1960)
  29. Zhang RY, Wang XM, Gong SJ, He NY: Electrochemical detection of single A-G mismatch using biosensing surface based on gold nanoparticles. Geno Prot Bioinfo. 2005, 3: 47-51. (10.1016/S1672-0229(05)03007-X) / Geno Prot Bioinfo by RY Zhang (2005)
  30. Berggren Ch, Stålhandske P, Brundell J, Johansson G: A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanal. 1999, 11: 156-160. (10.1002/(SICI)1521-4109(199903)11:3<156::AID-ELAN156>3.0.CO;2-O) / Electroanal by Ch Berggren (1999)
  31. Gau JJ, Lan EH, Dunn B, Ho ChM, Woo JCS: A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens Bioelectron. 2001, 16: 745-755. (10.1016/S0956-5663(01)00216-0) / Biosens Bioelectron by JJ Gau (2001)
  32. Estrela P, Stewart AG, Migliorato P, Maeda H: Label-free detection of DNA hybridization with Au/SiO2/Si diodes and Poly-Si TFTs. Technical Digest of 2004 IEDM – International Electron Devices Meeting, IEEE. 2004, 1009- (10.1109/IEDM.2004.1419359) / Technical Digest of 2004 IEDM – International Electron Devices Meeting, IEEE by P Estrela (2004)
  33. Estrela P, Migliorato H, Takiguchi H, Fukushima , Nebashi S: Electrical Detection of Biomolecular Interactions with Metal-Insulator- Semiconductor Diodes. Biosens Bioelectron. 2005, 20: 1580-1586. (10.1016/j.bios.2004.08.010) / Biosens Bioelectron by P Estrela (2005)
  34. Schöning MJ, Poghossia A: Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst. 2002, 127: 1137-1151. (10.1039/b204444g) / Analyst by MJ Schöning (2002)
  35. Macanovic A, Marquette C, Polychronakos C, Lawrence MF: Impedance-based detection of DNA sequences using a silicon transducer with PNA as the probe layer. Nucleic Acids Res. 2004, 32: e20- (10.1093/nar/gnh003) / Nucleic Acids Res by A Macanovic (2004)
  36. Guiducci C, Stagni C, Zuccheri G, Bogliolo A, Benini L, Samorì B, Riccò B: DNA detection by integrable electronics. Biosens Bioelectron. 2004, 19: 781-787. (10.1016/S0956-5663(03)00266-5) / Biosens Bioelectron by C Guiducci (2004)
  37. Walsh MK, Wang X, Weimer BC: Optimizing the immobilization of single-stranded DNA onto glass beads. J Biochem Bioph Meth. 2001, 47: 221-231. (10.1016/S0165-022X(00)00146-9) / J Biochem Bioph Meth by MK Walsh (2001)
  38. Verpoorte E: Beads and chips: new recipes for analysis. Lab Chip. 2003, 3: 60-68. (10.1039/b313217j) / Lab Chip by E Verpoorte (2003)
  39. Taton TA, Lu G, Mirkin CA: Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes. J Am Chem Soc. 2001, 123: 5164-5165. (10.1021/ja0102639) / J Am Chem Soc by TA Taton (2001)
  40. Hutter E, Pileni MP: Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B. 2003, 107: 6497-6499. (10.1021/jp0342834) / J Phys Chem B by E Hutter (2003)
  41. Park SJ, Taton TA, Mirkin CA: Array-based electrical detection of DNA with nanoparticle probes. Science. 2002, 295: 1503-1506. (10.1126/science.1066348) / Science by SJ Park (2002)
  42. Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E: Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem. 2004, 76: 1877-1884. (10.1021/ac0351872) / Anal Chem by K Kerman (2004)
  43. Gabig-Ciminska M, Holmgren A, Andresen H, Barken KB, Wümpelmann M, Albers J, Hintsche R, Breitenstein A, Neubauer P, Los M, Czyz A, Wegrzyn G, Silfversparre G, Jürgen B, Schweder T, Enfors S-O: Electric chips for rapid detection and quantification of nucleic acids. Biosens Bioelectron. 2004, 19: 537-546. (10.1016/S0956-5663(03)00273-2) / Biosens Bioelectron by M Gabig-Ciminska (2004)
  44. Gabig-Ciminska M, Los M, Holmgren A, Albers J, Czyz A, Hintsche R, Wegrzyn G, Enfors S-O: Detection of bacteriophage infection and prophage induction in bacterial cultures by means of electric DNA chips. Anal Biochem. 2004, 324: 84-91. (10.1016/j.ab.2003.09.020) / Anal Biochem by M Gabig-Ciminska (2004)
  45. Gabig-Ciminska M, Liu Y, Enfors S-O: Gene-based identification of bacterial colonies with an electric chip. Anal Biochem. 2005, 345: 270-276. (10.1016/j.ab.2005.07.024) / Anal Biochem by M Gabig-Ciminska (2005)
  46. Panicker G, Vickery MCL, Bej AK: Multiplex PCR detection of clinical and environmental strains of Vibrio vulnificus in shellfish. Can J Microbiol. 2004, 50: 911-922. (10.1139/w04-085) / Can J Microbiol by G Panicker (2004)
  47. Borucki MK, Reynolds J, Call DR, Ward TJ, Page B, Kadushin J: Suspension microarray with dendrimer signal amplification allows direct and high-throughput subtyping of Listeria monocytogenes from genomic DNA. J Clin Microbiol. 2005, 43: 3255-3259. (10.1128/JCM.43.7.3255-3259.2005) / J Clin Microbiol by MK Borucki (2005)
  48. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P: Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem. 2004, 76: 1824-1831. (10.1021/ac0353029) / Anal Chem by RH Liu (2004)
  49. eBiochip Systems GmbH, Germany. [http://www.ebiochip.com/]
  50. Rudi K, Nogva HK, Moen B, Nissen H, Bredholt S, Moretro T, Naterstad K, Holck A: Development and application of new nucleic acid-based technologies for microbial community analyses in foods. Int J Food Microbiol. 2002, 78: 171-180. (10.1016/S0168-1605(02)00236-2) / Int J Food Microbiol by K Rudi (2002)
  51. Williams KA, Veenhuizen PTM, G de la Torre B, Eritja R, Dekker C: Carbon nanotubes with DNA recognition. Nature. 2002, 420: 761-761. (10.1038/420761a) / Nature by KA Williams (2002)
  52. Keren K, Berman RS, Buchstab E, Sivan U, Braun E: DNA-templated carbon nanotube field-effect transistor. Science. 2003, 302: 1380-1381. (10.1126/science.1091022) / Science by K Keren (2003)
  53. Hahm J, Lieber ChM: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Letters. 2004, 4: 51-54. (10.1021/nl034853b) / Nano Letters by J Hahm (2004)
  54. Potolsky F, Lieber ChM: Nanowire nanosensors. Matrials to study. 2005, Elsevier Ltd, 20-28. / Matrials to study by F Potolsky (2005)
  55. Lane S, Evermann J, Loge F, Call DR: Amplicon secondary structure prevents target hybridization to oligonucleotide microarrays. Biosens Bioelectron. 2004, 20: 728-735. (10.1016/j.bios.2004.04.014) / Biosens Bioelectron by S Lane (2004)
  56. Aoki H, Umezawa Y: Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. Analyst. 2003, 128: 681-685. (10.1039/b300465a) / Analyst by H Aoki (2003)
  57. Pellestor F, Paulasova P: The peptide nucleic acids, efficient tools for molecular diagnosis. International Journal of Molecular Medicine. 2004, 13: 521-525. / International Journal of Molecular Medicine by F Pellestor (2004)
  58. Steel AB, Levicky RL, Herne TM, Tarlov MJ: Immobilization of nucleic acids at solid surface: effect of oligonucleotide length on layer assembly. Biophysical Journal. 2000, 79: 975-981. (10.1016/S0006-3495(00)76351-X) / Biophysical Journal by AB Steel (2000)
  59. Fuchs BM, Glöckner FO, Wulf J, Amann R: Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol. 2000, 66: 3603-3607. (10.1128/AEM.66.8.3603-3607.2000) / Appl Environ Microbiol by BM Fuchs (2000)
  60. Barken KB, Gabig-Ciminska M, Holmgren A, Molin S: Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybrodozation. Biotechniques. 2004, 36: 124-132. (10.2144/04361RR03) / Biotechniques by KB Barken (2004)
  61. Varotto C, Richly E, Salamini F, Leister D: GST-PRIME: a genome-wide primer design software for the generation of gene sequence tags. Nucleic Acids Res. 2001, 29: 4373-4377. (10.1093/nar/29.21.4373) / Nucleic Acids Res by C Varotto (2001)
Dates
Type When
Created 19 years, 5 months ago (March 10, 2006, 2:15 p.m.)
Deposited 4 years ago (Aug. 31, 2021, 6:59 p.m.)
Indexed 3 months, 3 weeks ago (May 12, 2025, 6:43 a.m.)
Issued 19 years, 6 months ago (March 2, 2006)
Published 19 years, 6 months ago (March 2, 2006)
Published Online 19 years, 6 months ago (March 2, 2006)
Published Print 18 years, 9 months ago (Dec. 1, 2006)
Funders 0

None

@article{Gabig_Ciminska_2006, title={Developing nucleic acid-based electrical detection systems}, volume={5}, ISSN={1475-2859}, url={http://dx.doi.org/10.1186/1475-2859-5-9}, DOI={10.1186/1475-2859-5-9}, number={1}, journal={Microbial Cell Factories}, publisher={Springer Science and Business Media LLC}, author={Gabig-Ciminska, Magdalena}, year={2006}, month=mar }