Crossref journal-article
American Society of Hematology
Blood (234)
Abstract

AbstractHypoxia is a major pathophysiological condition for the induction of angiogenesis, which is a crucial aspect of growth in solid tumors. In mammalian cells, the transcriptional response to oxygen deprivation is largely mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimer composed of HIF-1α and HIF-1β subunits. However, the response of endothelial cells to hypoxia and the specific involvement of HIF-α subunits in this process are still poorly understood. We show that human umbilical vein endothelial cells (HUVECs) cultured in the absence of growth factors survive and form tubelike structures when cultured under hypoxic, but not normoxic, conditions. HUVECs expressed both HIF-1α and HIF-2α when cultured under hypoxic conditions. Transfection of HIF-1α, but not HIF-2α, siRNA to HUVECs completely abrogated hypoxic induction of cords. Neutralizing antibodies to bFGF, but not IGF-1, VEGF, or PDGF-BB, blocked survival and sprouting of HUVECs under hypoxic conditions, suggesting the existence of an autocrine loop induced by low oxygen levels. Notably, bFGF-dependent induction of cord formation under normoxic conditions required HIF-1α activity, which was also essential for hypoxic induction of bFGF mRNA and protein expression. These results uncover the existence of an HIF-1α–bFGF amplification pathway that mediates survival and sprouting of endothelial cells under hypoxic conditions.

Bibliography

Calvani, M., Rapisarda, A., Uranchimeg, B., Shoemaker, R. H., & Melillo, G. (2006). Hypoxic induction of an HIF-1α–dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood, 107(7), 2705–2712.

Authors 5
  1. Maura Calvani (first)
  2. Annamaria Rapisarda (additional)
  3. Badarch Uranchimeg (additional)
  4. Robert H. Shoemaker (additional)
  5. Giovanni Melillo (additional)
References 42 Referenced 197
  1. Folkman J, D'Amore PA. Blood vessel formation: what is its molecular basis? Cell. 1996;87: 1153-1155. (10.1016/S0092-8674(00)81810-3)
  2. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407: 249-257. (10.1038/35025220)
  3. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86: 353-364. (10.1016/S0092-8674(00)80108-7)
  4. Acker T, Plate KH. Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell Tissue Res. 2003;314: 145-155. (10.1007/s00441-003-0763-8)
  5. Bicknell R, Harris AL. Novel angiogenic signaling pathways and vascular targets. Annu Rev Pharmacol Toxicol. 2004;44: 219-238. (10.1146/annurev.pharmtox.44.101802.121650)
  6. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3: 643-651. (10.2174/1566524033479465)
  7. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92: 5510-5514. (10.1073/pnas.92.12.5510)
  8. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292: 464-468. (10.1126/science.1059817)
  9. Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107: 43-54. (10.1016/S0092-8674(01)00507-4)
  10. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60: 1541-1545.
  11. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3: 721-732. (10.1038/nrc1187)
  12. Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14: 391-396. (10.1101/gad.14.4.391)
  13. Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev. 1998;73: 117-123. (10.1016/S0925-4773(98)00038-0)
  14. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11: 72-82. (10.1101/gad.11.1.72)
  15. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 1998;12: 3320-3324. (10.1101/gad.12.21.3320)
  16. Wiesener MS, Jurgensen JS, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17: 271-273. (10.1096/fj.02-0445fje)
  17. Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 1997;63: 51-60. (10.1016/S0925-4773(97)00674-6)
  18. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997;94: 4273-4278. (10.1073/pnas.94.9.4273)
  19. Wiesener MS, Turley H, Allen WE, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998;92: 2260-2268. (10.1182/blood.V92.7.2260)
  20. Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH, Melillo G. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 2004;64: 1475-1482. (10.1158/0008-5472.CAN-03-3139)
  21. Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93: 1074-1081. (10.1161/01.RES.0000102937.50486.1B)
  22. Yamakawa M, Liu LX, Date T, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res. 2003;93: 664-673. (10.1161/01.RES.0000093984.48643.D7)
  23. Zhang SX, Gozal D, Sachleben LR Jr, Rane M, Klein JB, Gozal E. Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-beta receptor/phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J. 2003;17: 1709-1711. (10.1096/fj.02-1111fje)
  24. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25: 5675-5686. (10.1128/MCB.25.13.5675-5686.2005)
  25. Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105: 659-669. (10.1182/blood-2004-07-2958)
  26. Tang N, Wang L, Esko J, et al. Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 2004;6: 485-495. (10.1016/j.ccr.2004.09.026)
  27. Scortegagna M, Ding K, Oktay Y, et al. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet. 2003;35: 331-340. (10.1038/ng1266)
  28. Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A. 2000;97: 8386-8391. (10.1073/pnas.140087397)
  29. Park SK, Dadak AM, Haase VH, Fontana L, Giaccia AJ, Johnson RS. Hypoxia-induced gene expression occurs solely through the action of hypoxia-inducible factor 1alpha (HIF-1alpha): role of cytoplasmic trapping of HIF-2alpha. Mol Cell Biol. 2003;23: 4959-4971. (10.1128/MCB.23.14.4959-4971.2003)
  30. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285: 1182-1186. (10.1056/NEJM197111182852108)
  31. Rapisarda A, Uranchimeg B, Scudiero DA, et al. Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 2002;62: 4316-4324.
  32. Rapisarda A, Zalek J, Hollingshead M, et al. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 2004;64: 6845-6848. (10.1158/0008-5472.CAN-04-2116)
  33. Petrangolini G, Pratesi G, De Cesare M, et al. Antiangiogenic effects of the novel camptothecin ST1481 (gimatecan) in human tumor xenografts. Mol Cancer Res. 2003;1: 863-870.
  34. Clements MK, Jones CB, Cumming M, Daoud SS. Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol. 1999;44: 411-416. (10.1007/s002800050997)
  35. Kusaka M, Sudo K, Matsutani E, et al. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470). Br J Cancer. 1994;69: 212-216. (10.1038/bjc.1994.41)
  36. Kiaris H, Chatzistamou I, Kalofoutis C, Koutselini H, Piperi C, Kalofoutis A. Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Mol Cell Biochem. 2004;261: 117-122. (10.1023/B:MCBI.0000028746.54447.6c)
  37. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5: 429-441. (10.1016/S1535-6108(04)00115-1)
  38. Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004;5: 405-406. (10.1016/S1535-6108(04)00118-7)
  39. Berger AP, Kofler K, Bektic J, et al. Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia. Prostate. 2003;57: 57-65. (10.1002/pros.10279)
  40. Li J, Shworak NW, Simons M. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J Cell Sci. 2002;115: 1951-1959. (10.1242/jcs.115.9.1951)
  41. Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E. Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology. 2005;46: 31-36. (10.1111/j.1365-2559.2005.02045.x)
  42. Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW. Hypoxia in combination with FGF-2 induces tube formation by human microvascular endothelial cells in a fibrin matrix: involvement of at least two signal transduction pathways. J Cell Sci. 2001;114: 825-833. (10.1242/jcs.114.4.825)
Dates
Type When
Created 19 years, 9 months ago (Nov. 22, 2005, 8:44 p.m.)
Deposited 2 years, 4 months ago (May 5, 2023, 11:23 a.m.)
Indexed 1 month ago (Aug. 3, 2025, 12:05 a.m.)
Issued 19 years, 5 months ago (April 1, 2006)
Published 19 years, 5 months ago (April 1, 2006)
Published Print 19 years, 5 months ago (April 1, 2006)
Funders 0

None

@article{Calvani_2006, title={Hypoxic induction of an HIF-1α–dependent bFGF autocrine loop drives angiogenesis in human endothelial cells}, volume={107}, ISSN={1528-0020}, url={http://dx.doi.org/10.1182/blood-2005-09-3541}, DOI={10.1182/blood-2005-09-3541}, number={7}, journal={Blood}, publisher={American Society of Hematology}, author={Calvani, Maura and Rapisarda, Annamaria and Uranchimeg, Badarch and Shoemaker, Robert H. and Melillo, Giovanni}, year={2006}, month=apr, pages={2705–2712} }