Crossref journal-article
American Society of Hematology
Blood (234)
Abstract

Terminal erythropoiesis is accompanied by extreme demand for iron to ensure proper hemoglobinization. Thus, erythroblasts must modify the “standard” post-transcriptional feedback regulation, balancing expression of ferritin (Fer; iron storage) versus transferrin receptor (TfR1; iron uptake) via specific mRNA binding of iron regulatory proteins (IRPs). Although erythroid differentiation involves high levels of incoming iron, TfR1 mRNA stability must be sustained and Fer mRNA translation must not be activated because iron storage would counteract hemoglobinization. Furthermore, translation of the erythroid-specific form of aminolevulinic acid synthase (ALAS-E) mRNA, catalyzing the first step of heme biosynthesis and regulated similarly as Fer mRNA by IRPs, must be ensured. We addressed these questions using mass cultures of primary murine erythroid progenitors from fetal liver, either undergoing sustained proliferation or highly synchronous differentiation. We indeed observed strong inhibition of Fer mRNA translation and efficient ALAS-E mRNA translation in differentiating erythroblasts. Moreover, in contrast to self-renewing cells, TfR1 stability and IRP mRNA binding were no longer modulated by iron supply. These and additional data stemming from inhibition of heme synthesis with succinylacetone or from iron overload suggest that highly efficient utilization of iron in mitochondrial heme synthesis during normal erythropoiesis alters the regulation of iron metabolism via the IRE/IRP system.

Bibliography

Schranzhofer, M., Schifrer, M., Cabrera, J. A., Kopp, S., Chiba, P., Beug, H., & Müllner, E. W. (2006). Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood, 107(10), 4159–4167.

Authors 7
  1. Matthias Schranzhofer (first)
  2. Manfred Schifrer (additional)
  3. Javier Antonio Cabrera (additional)
  4. Stephan Kopp (additional)
  5. Peter Chiba (additional)
  6. Hartmut Beug (additional)
  7. Ernst W. Müllner (additional)
References 82 Referenced 69
  1. Kawabata H, Germain RS, Ikezoe T, et al. Regulation of expression of murine transferrin receptor 2. Blood. 2001;98: 1949-1954. (10.1182/blood.V98.6.1949)
  2. Kawabata H, Nakamaki T, Ikonomi P, Smith RD, Germain RS, Koeffler HP. Expression of transferrin receptor 2 in normal and neoplastic hematopoietic cells. Blood. 2001;98: 2714-2719. (10.1182/blood.V98.9.2714)
  3. Fleming RE, Ahmann JR, Migas MC, et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis. Proc Natl Acad Sci U S A. 2002;99: 10653-10658. (10.1073/pnas.162360699)
  4. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T. Structure of the human transferrin receptortransferrin complex. Cell. 2004;116: 565-576. (10.1016/S0092-8674(04)00130-8)
  5. Baker HM, He QY, Briggs SK, Mason AB, Baker EN. Structural and functional consequences of binding site mutations in transferrin: crystal structures of the Asp63Glu and Arg124Ala mutants of the N-lobe of human transferrin. Biochemistry. 2003;42: 7084-7089. (10.1021/bi020689f)
  6. Fleming MD, Trenor CC III, Su MA, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997;16: 383-386. (10.1038/ng0897-383)
  7. Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388: 482-488. (10.1038/41343)
  8. Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci. 2004;1012: 1-13. (10.1196/annals.1306.001)
  9. Beinert H, Kennedy MC. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 1993;7: 1442-1449. (10.1096/fasebj.7.15.8262329)
  10. Iwai K, Klausner RD, Rouault TA. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 1995; 14: 5350-5357. (10.1002/j.1460-2075.1995.tb00219.x)
  11. Pantopoulos K, Gray NK, Hentze MW. Differential regulation of two related RNA-binding proteins, iron regulatory protein (IRP) and IRPB. RNA. 1995;1: 155-163.
  12. Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270: 21645-21651. (10.1074/jbc.270.37.21645)
  13. Hentze MW, Rouault TA, Caughman SW, Dancis A, Harford JB, Klausner RD. A cis-acting element is necessary and sufficient for translational regulation of human ferritin expression in response to iron. Proc Natl Acad Sci U S A. 1987;84: 6730-6734. (10.1073/pnas.84.19.6730)
  14. Leibold EA, Munro HN. Cytoplasmic protein binds in vitro to a highly conserved sequence in the 5′ untranslated region of ferritin heavy- and light-subunit mRNAs. Proc Natl Acad Sci U S A. 1988; 85: 2171-2175. (10.1073/pnas.85.7.2171)
  15. Mullner EW, Neupert B, Kuhn LC. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell. 1989;58: 373-382. (10.1016/0092-8674(89)90851-9)
  16. Binder R, Horowitz JA, Basilion JP, Koeller DM, Klausner RD, Harford JB. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3′ UTR and does not involve poly(A) tail shortening. EMBO J. 1994;13: 1969-1980. (10.1002/j.1460-2075.1994.tb06466.x)
  17. Koeller DM, Casey JL, Hentze MW, et al. A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. Proc Natl Acad Sci U S A. 1989;86: 3574-3578. (10.1073/pnas.86.10.3574)
  18. Klausner RD, Rouault TA, Harford JB. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell. 1993;72: 19-28. (10.1016/0092-8674(93)90046-S)
  19. Kuhn LC, Hentze MW. Coordination of cellular iron metabolism by post-transcriptional gene regulation. J Inorg Biochem. 1992;47: 183-195. (10.1016/0162-0134(92)84064-T)
  20. Cairo G, Pietrangelo A. Transferrin receptor gene expression during rat liver regeneration: evidence for post-transcriptional regulation by iron regulatory factorB, a second iron-responsive element-binding protein. J Biol Chem. 1994;269: 6405-6409. (10.1016/S0021-9258(17)37386-6)
  21. Cairo G, Tacchini L, Pietrangelo A. Lack of coordinate control of ferritin and transferrin receptor expression during rat liver regeneration. Hepatology. 1998;28: 173-178. (10.1002/hep.510280123)
  22. Testa U, Kuhn L, Petrini M, Quaranta MT, Pelosi E, Peschle C. Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytesmacrophages. J Biol Chem. 1991;266: 13925-13930. (10.1016/S0021-9258(18)92790-0)
  23. Testa U, Petrini M, Quaranta MT, et al. Iron upmodulates the expression of transferrin receptors during monocyte-macrophage maturation. J Biol Chem. 1989;264: 13181-13187. (10.1016/S0021-9258(18)51612-4)
  24. Chan RY, Seiser C, Schulman HM, Kuhn LC, Ponka P. Regulation of transferrin receptor mRNA expression: distinct regulatory features in erythroid cells. Eur J Biochem. 1994;220: 683-692. (10.1111/j.1432-1033.1994.tb18669.x)
  25. Busfield SJ, Tilbrook PA, Callus BA, Spadaccini A, Kuhn L, Klinken SP. Complex regulation of transferrin receptors during erythropoietin-induced differentiation of J2E erythroid cells—elevated transcription and mRNA stabilisation produce only a modest rise in protein content. Eur J Biochem. 1997;249: 77-84. (10.1111/j.1432-1033.1997.t01-1-00077.x)
  26. Nakajima O, Takahashi S, Harigae H, et al. Heme deficiency in erythroid lineage causes differentiation arrest and cytoplasmic iron overload. EMBO J. 1999;18: 6282-6289. (10.1093/emboj/18.22.6282)
  27. Sadlon TJ, Dell'Oso T, Surinya KH, May BK. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis. Int J Biochem Cell Biol. 1999;31: 1153-1167. (10.1016/S1357-2725(99)00073-4)
  28. Schmidt JA, Marshall J, Hayman MJ, Ponka P, Beug H. Control of erythroid differentiation: possible role of the transferrin cycle. Cell. 1986;46: 41-51. (10.1016/0092-8674(86)90858-5)
  29. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells [see comments]. Blood. 1997;89: 1-25. (10.1182/blood.V89.1.1)
  30. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet. 1999;21: 396-399. (10.1038/7727)
  31. Picard V, Renaudie F, Porcher C, Hentze MW, Grandchamp B, Beaumont C. Overexpression of the ferritin H subunit in cultured erythroid cells changes the intracellular iron distribution. Blood. 1996;87: 2057-2064. (10.1182/blood.V87.5.2057.2057)
  32. Dolznig H, Boulme F, Stangl K, et al. Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays. FASEB J. 2001;15: 1442-1444. (10.1096/fj.00-0705fje)
  33. von Lindern M, Deiner EM, Dolznig H, et al. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis. Oncogene. 2001;20: 3651-3664. (10.1038/sj.onc.1204494)
  34. Mikulits W, Chen D, Mullner EW. Dexamethasone inducible gene expression optimised by glucocorticoid antagonists. Nucleic Acids Res. 1995;23: 2342-2343. (10.1093/nar/23.12.2342)
  35. Ponka P, Wilczynska A, Schulman HM. Iron utilization in rabbit reticulocytes: a study using succinylacetone as an inhibitor or heme synthesis. Biochim Biophys Acta. 1982;720: 96-105. (10.1016/0167-4889(82)90043-X)
  36. Beug H, Palmieri S, Freudenstein C, Zentgraf H, Graf T. Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. Cell. 1982;28: 907-919. (10.1016/0092-8674(82)90070-8)
  37. Kowenz E, Leutz A, Doderlein G, Graf T, Beug H. ts-oncogene-transformed erythroleukemic cells: a novel test system for purifying and characterizing avian erythroid growth factors. Hamatol Bluttransfus. 1987;31: 199-209. (10.1007/978-3-642-72624-8_44)
  38. Kieslinger M, Woldman I, Moriggl R, et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 2000;14: 232-244. (10.1101/gad.14.2.232)
  39. Mullner EW, Garcia-Sanz JA. Polysome gradients. In: Lefkovits I, ed. Manual of Immunological Methods. Vol. 1 London, United Kingdom: Academic Press; 1997: 457-462. (10.1016/B978-012442710-5.50050-2)
  40. Mikulits W, Schranzhofer M, Bauer A, et al. Impaired ferritin mRNA translation in primary erythroid progenitors: shift to iron-dependent regulation by the v-ErbA oncoprotein. Blood. 1999;94: 4321-4332. (10.1182/blood.V94.12.4321)
  41. Mikulits W, Sauer T, Infante AA, Garcia-Sanz JA, Mullner EW. Structure and function of the iron-responsive element from human ferritin L chain mRNA. Biochem Biophys Res Commun. 1997; 235: 212-216. (10.1006/bbrc.1997.6647)
  42. Henderson BR, Menotti E, Bonnard C, Kuhn LC. Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. J Biol Chem. 1994; 269: 17481-17489. (10.1016/S0021-9258(17)32466-3)
  43. Hentze MW, Rouault TA, Harford JB, Klausner RD. Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science. 1989;244: 357-359. (10.1126/science.2711187)
  44. Eisenstein RS, Tuazon PT, Schalinske KL, Anderson SA, Traugh JA. Iron-responsive element-binding protein: phosphorylation by protein kinase C. J Biol Chem. 1993;268: 27363-27370. (10.1016/S0021-9258(19)74258-6)
  45. Oishi H, Nomiyama H, Nomiyama K, Tomokuni K. Fluorometric HPLC determination of delta-aminolevulinic acid (ALA) in the plasma and urine of lead workers: biological indicators of lead exposure. J Anal Toxicol. 1996;20: 106-110. (10.1093/jat/20.2.106)
  46. Rifkind RA, Marks PA, Bank A, et al. Erythroid differentiation and the cell cycle: some implications from murine foetal and erythroleukemic cells. Ann Immunol (Paris). 1976;127: 887-893.
  47. Nudel U, Salmon JE, Terada M, Bank A, Rifkind RA, Marks PA. Differential effects of chemical inducers on expression of beta globin genes in murine erythroleukemia cells. Proc Natl Acad Sci U S A. 1977;74: 1100-1104. (10.1073/pnas.74.3.1100)
  48. Arnstein HR. Changes in protein biosynthesis and enzyme activities during erythroid-cell differentiation. Biochem Soc Trans. 1976;4: 965-968. (10.1042/bst0040965)
  49. Dolznig H, Habermann B, Stangl K, et al. Apoptosis protection by the epo target bcl-x(l) allows factor-independent differentiation of primary erythroblasts. Curr Biol. 2002;12: 1076-1085. (10.1016/S0960-9822(02)00930-2)
  50. Fuerstenberg S, Leitner I, Schroeder C, Schwarz H, Vennstrom B, Beug H. Transcriptional repression of band 3 and CAII in v-erbA transformed erythroblasts accounts for an important part of the leukaemic phenotype. EMBO J. 1992;11: 3355-3365. (10.1002/j.1460-2075.1992.tb05414.x)
  51. Aziz N, Munro HN. Both subunits of rat liver ferritin are regulated at a translational level by iron induction. Nucleic Acids Res. 1986;14: 915-927. (10.1093/nar/14.2.915)
  52. Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem. 1993;268: 5974-5978. (10.1016/S0021-9258(18)53414-1)
  53. Beaumont C, Dugast I, Renaudie F, Souroujon M, Grandchamp B. Transcriptional regulation of ferritin H and L subunits in adult erythroid and liver cells from the mouse: unambiguous identification of mouse ferritin subunits and in vitro formation of the ferritin shells. J Biol Chem. 1989;264: 7498-7504. (10.1016/S0021-9258(18)83262-8)
  54. Beaumont C, Jain SK, Bogard M, Nordmann Y, Drysdale J. Ferritin synthesis in differentiating Friend erythroleukemic cells. J Biol Chem. 1987; 262: 10619-10623. (10.1016/S0021-9258(18)61008-7)
  55. Lobmayr L, Sauer T, Killisch I, et al. Transferrin receptor hyperexpression in primary erythroblasts is lost on transformation by avian erythroblastosis virus. Blood. 2002;100: 289-298. (10.1182/blood.V100.1.289)
  56. Killisch I, Steinlein P, Romisch K, Hollinshead R, Beug H, Griffiths G. Characterization of early and late endocytic compartments of the transferrin cycle: transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J Cell Sci. 1992;103: 211-232. (10.1242/jcs.103.1.211)
  57. Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W, Hentze MW. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem. 1997;272: 9802-9808. (10.1074/jbc.272.15.9802)
  58. Seiser C, Posch M, Thompson N, Kuhn LC. Effect of transcription inhibitors on the iron-dependent degradation of transferrin receptor mRNA. J Biol Chem. 1995;270: 29400-29406. (10.1074/jbc.270.49.29400)
  59. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, Cabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood. 1999;94: 2128-2134. (10.1182/blood.V94.6.2128)
  60. Picard V, Epsztejn S, Santambrogio P, Cabantchik ZI, Beaumont C. Role of ferritin in the control of the labile iron pool in murine erythroleukemia cells. J Biol Chem. 1998;273: 15382-15386. (10.1074/jbc.273.25.15382)
  61. Ponka P, Sheftel AD, Zhang AS. Iron targeting to mitochondria in erythroid cells. Biochem Soc Trans. 2002;30: 735-738. (10.1042/bst0300735)
  62. Richardson DR, Ponka P, Vyoral D. Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism. Blood. 1996;87: 3477-3488. (10.1182/blood.V87.8.3477.bloodjournal8783477)
  63. Zhang AS, Sheftel AD, Ponka P. Intracellular kinetics of iron in reticulocytes: evidence for endosome involvement in iron targeting to mitochondria. Blood. 2005;105: 368-375. (10.1182/blood-2004-06-2226)
  64. Chan LN, Gerhardt EM. Transferrin receptor gene is hyperexpressed and transcriptionally regulated in differentiating erythroid cells. J Biol Chem. 1992;267: 8254-8259. (10.1016/S0021-9258(18)42435-0)
  65. DeRusso PA, Philpott CC, Iwai K, Mostowski HS, Klausner RD, Rouault TA. Expression of a constitutive mutant of iron regulatory protein 1 abolishes iron homeostasis in mammalian cells. J Biol Chem. 1995;270: 15451-15454. (10.1074/jbc.270.26.15451)
  66. Woodard SI, Dailey HA. Multiple regulatory steps in erythroid heme biosynthesis. Arch Biochem Biophys. 2000;384: 375-378. (10.1006/abbi.2000.2069)
  67. Cotter PD, Baumann M, Bishop DF. Enzymatic defect in “X-linked” sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency. Proc Natl Acad Sci U S A. 1992;89: 4028-4032. (10.1073/pnas.89.9.4028)
  68. Riddle RD, Yamamoto M, Engel JD. Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci U S A. 1989;86: 792-796. (10.1073/pnas.86.3.792)
  69. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA. Microcytic anemia, erythropoietic protoporphyria, and neurodegeneration in mice with targeted deletion of iron-regulatory protein 2. Blood. 2005; 106: 1084-1091. (10.1182/blood-2004-12-4703)
  70. Galy B, Ferring D, Minana B, et al. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood. 2005; 106: 2580-2589. (10.1182/blood-2005-04-1365)
  71. Meyron-Holtz EG, Ghosh MC, Iwai K, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23: 386-395. (10.1038/sj.emboj.7600041)
  72. Wingert RA, Galloway JL, Barut B, et al. Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature. 2005;436: 1035-1039. (10.1038/nature03887)
  73. Ke Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding: fine-tuning of mRNA regulation? J Biol Chem. 1998;273: 23637-23640. (10.1074/jbc.273.37.23637)
  74. Ke Y, Sierzputowska-Gracz H, Gdaniec Z, Theil EC. Internal loop/bulge and hairpin loop of the iron-responsive element of ferritin mRNA contribute to maximal iron regulatory protein 2 binding and translational regulation in the iso-iron-responsive element/iso-iron regulatory protein family. Biochemistry. 2000;39: 6235-6242. (10.1021/bi9924765)
  75. Erlitzki R, Long JC, Theil EC. Multiple, conserved iron-responsive elements in the 3′-untranslated region of transferrin receptor mRNA enhance binding of iron regulatory protein 2. J Biol Chem. 2002;277: 42579-42587. (10.1074/jbc.M207918200)
  76. Canonne-Hergaux F, Zhang AS, Ponka P, Gros P. Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood. 2001;98: 3823-3830. (10.1182/blood.V98.13.3823)
  77. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet. 1999;8: 743-749. (10.1093/hmg/8.5.743)
  78. Shirihai OS, Gregory T, Yu C, Orkin SH, Weiss MJ. ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J. 2000;19: 2492-2502. (10.1093/emboj/19.11.2492)
  79. Morgan EH. Mechanisms of iron transport into rat erythroid cells. J Cell Physiol. 2001;186: 193-200. (10.1002/1097-4652(200102)186:2<193::AID-JCP1026>3.0.CO;2-5)
  80. Levi S, Corsi B, Bosisio M, et al. A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem. 2001;276: 24437-24440. (10.1074/jbc.C100141200)
  81. Levi S, Arosio P. Mitochondrial ferritin. Int J Biochem Cell Biol. 2004;36: 1887-1889. (10.1016/j.biocel.2003.10.020)
  82. Bekri S, May A, Cotter PD, et al. A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood. 2003;102: 698-704. (10.1182/blood-2002-06-1623)
Dates
Type When
Created 19 years, 7 months ago (Jan. 19, 2006, 9:04 p.m.)
Deposited 2 years, 4 months ago (May 6, 2023, 3:01 a.m.)
Indexed 2 months ago (July 1, 2025, 9:47 p.m.)
Issued 19 years, 3 months ago (May 15, 2006)
Published 19 years, 3 months ago (May 15, 2006)
Published Print 19 years, 3 months ago (May 15, 2006)
Funders 0

None

@article{Schranzhofer_2006, title={Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis}, volume={107}, ISSN={1528-0020}, url={http://dx.doi.org/10.1182/blood-2005-05-1809}, DOI={10.1182/blood-2005-05-1809}, number={10}, journal={Blood}, publisher={American Society of Hematology}, author={Schranzhofer, Matthias and Schifrer, Manfred and Cabrera, Javier Antonio and Kopp, Stephan and Chiba, Peter and Beug, Hartmut and Müllner, Ernst W.}, year={2006}, month=may, pages={4159–4167} }