Crossref journal-article
MIT Press - Journals
Neural Computation (281)
Abstract

Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.

Bibliography

Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W., & Seung, H. S. (2010). Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation. Neural Computation, 22(2), 511–538.

Authors 8
  1. Srinivas C. Turaga (first)
  2. Joseph F. Murray (additional)
  3. Viren Jain (additional)
  4. Fabian Roth (additional)
  5. Moritz Helmstaedter (additional)
  6. Kevin Briggman (additional)
  7. Winfried Denk (additional)
  8. H. Sebastian Seung (additional)
References 32 Referenced 290
  1. 10.1109/TITB.2002.1006304
  2. 10.1007/978-3-540-69321-5_15
  3. 10.1109/34.969114
  4. 10.1016/j.conb.2006.08.010
  5. 10.1109/42.293928
  6. {'key': 'B6', 'volume-title': 'Introduction to algorithms', 'author': 'Cormen T. H.', 'year': '2000'} / Introduction to algorithms by Cormen T. H. (2000)
  7. 10.1109/CVPR.2005.332
  8. 10.1371/journal.pbio.0020329
  9. 10.1145/1081870.1081948
  10. 10.1016/S0031-3203(01)00178-9
  11. 10.1023/B:VISI.0000022288.19776.77
  12. 10.1111/j.1365-2818.2005.01466.x
  13. 10.1109/CVPR.2003.1211452
  14. 10.1109/CVPR.1999.784979
  15. {'key': 'B15', 'first-page': '142', 'author': 'Helmstaedter M. N.', 'year': '2007', 'journal-title': 'Society for Neuroscience Abstracts'} / Society for Neuroscience Abstracts by Helmstaedter M. N. (2007)
  16. 10.1109/ICCV.2007.4408909
  17. 10.1016/j.media.2008.05.002
  18. 10.1162/neco.1989.1.4.541
  19. 10.1109/5.726791
  20. 10.1007/3-540-49430-8_2
  21. 10.1016/j.media.2005.09.002
  22. 10.1109/TPAMI.2004.1261075
  23. 10.1016/j.jneumeth.2008.09.006
  24. 10.1109/72.363449
  25. 10.1109/TIP.2005.852470
  26. 10.1109/TMI.2007.898551
  27. 10.1109/34.868688
  28. 10.1136/bjo.83.8.902
  29. 10.1016/j.conb.2007.11.004
  30. {'key': 'B30', 'volume-title': 'Information retrieval', 'author': 'Van Rijsbergen C.', 'year': '1979'} / Information retrieval by Van Rijsbergen C. (1979)
  31. 10.1109/TPAMI.2002.1114849
  32. 10.1098/rstb.1986.0056
Dates
Type When
Created 15 years, 9 months ago (Nov. 18, 2009, 7:59 p.m.)
Deposited 4 years, 5 months ago (March 12, 2021, 4:37 p.m.)
Indexed 1 month, 3 weeks ago (June 27, 2025, 5:51 a.m.)
Issued 15 years, 6 months ago (Feb. 1, 2010)
Published 15 years, 6 months ago (Feb. 1, 2010)
Published Print 15 years, 6 months ago (Feb. 1, 2010)
Funders 0

None

@article{Turaga_2010, title={Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation}, volume={22}, ISSN={1530-888X}, url={http://dx.doi.org/10.1162/neco.2009.10-08-881}, DOI={10.1162/neco.2009.10-08-881}, number={2}, journal={Neural Computation}, publisher={MIT Press - Journals}, author={Turaga, Srinivas C. and Murray, Joseph F. and Jain, Viren and Roth, Fabian and Helmstaedter, Moritz and Briggman, Kevin and Denk, Winfried and Seung, H. Sebastian}, year={2010}, month=feb, pages={511–538} }