Abstract
Cortical neurons are predominantly excitatory and highly interconnected. In spite of this, the cortex is remarkably stable: normal brains do not exhibit the kind of runaway excitation one might expect of such a system. How does the cortex maintain stability in the face of this massive excitatory feedback? More importantly, how does it do so during computations, which necessarily involve elevated firing rates? Here we address these questions in the context of attractor networks—networks that exhibit multiple stable states, or memories. We find that such networks can be stabilized at the relatively low firing rates observed in vivo if two conditions are met: (1) the background state, where all neurons are firing at low rates, is inhibition dominated, and (2) the fraction of neurons involved in a memory is above some threshold, so that there is sufficient coupling between the memory neurons and the background. This allows “dynamical stabilization” of the attractors, meaning feedback from the pool of background neurons stabilizes what would otherwise be an unstable state. We suggest that dynamical stabilization may be a strategy used for a broad range of computations, not just those involving attractors.
References
50
Referenced
51
10.1103/PhysRevE.48.1483
10.1088/0954-898X/8/4/003
10.1093/cercor/7.3.237
10.1523/JNEUROSCI.21-23-09151.2001
10.1053/seiz.2001.0584
10.1088/0954-898X/11/4/302
10.1162/089976603322362365
10.1006/jtbi.1998.0782
10.1023/A:1011204814320
10.1103/PhysRevA.40.4145
10.1016/S0896-6273(02)00820-6
10.1038/nature01171
10.1162/neco.1996.8.5.979
10.1137/0146017
10.1162/089976602320264015
10.1126/science.291.5502.312
10.1126/science.173.3997.652
10.1523/JNEUROSCI.02-03-00361.1982
10.1088/0305-4470/21/1/030
10.1103/PhysRevLett.71.312
10.1103/PhysRevA.41.1843
10.1162/089976698300017331
10.1103/PhysRevLett.86.4175
10.1073/pnas.79.8.2554
10.1073/pnas.81.10.3088
10.1152/jn.2000.83.2.808
10.1152/jn.2000.83.2.828
10.1016/S0960-9822(03)00135-0
10.1088/0954-898X/10/4/305
10.1523/JNEUROSCI.16-23-07757.1996
10.1152/jn.1985.54.4.782
10.1016/S0920-1211(02)00071-2
10.1038/331068a0
10.1016/S0959-4388(00)00071-4
10.1152/jn.1995.74.1.162
10.1523/JNEUROSCI.23-07-02861.2003
10.1209/0295-5075/10/5/013
10.1152/jn.1996.75.4.1573
10.1073/pnas.93.23.13339
10.1007/s00422-002-0363-9
10.1103/PhysRevE.62.8413
10.1038/44372
10.1088/0954-898X/4/3/002
10.1002/(SICI)1098-1063(1996)6:6<666::AID-HIPO9>3.0.CO;2-E
10.1209/0295-5075/6/2/002
10.1126/science.274.5293.1724
10.1523/JNEUROSCI.19-21-09587.1999
10.1126/science.8316836
10.1016/S0006-3495(72)86068-5
10.1111/j.1469-7793.1998.715bv.x
Dates
Type | When |
---|---|
Created | 21 years, 3 months ago (May 11, 2004, 8:12 p.m.) |
Deposited | 4 years, 5 months ago (March 12, 2021, 4:50 p.m.) |
Indexed | 1 month ago (July 31, 2025, 11:46 p.m.) |
Issued | 21 years, 2 months ago (July 1, 2004) |
Published | 21 years, 2 months ago (July 1, 2004) |
Published Print | 21 years, 2 months ago (July 1, 2004) |
@article{Latham_2004, title={Computing and Stability in Cortical Networks}, volume={16}, ISSN={1530-888X}, url={http://dx.doi.org/10.1162/089976604323057434}, DOI={10.1162/089976604323057434}, number={7}, journal={Neural Computation}, publisher={MIT Press - Journals}, author={Latham, Peter E. and Nirenberg, Sheila}, year={2004}, month=jul, pages={1385–1412} }