Crossref journal-article
MIT Press - Journals
Neural Computation (281)
Abstract

Recent experimental studies indicate that recurrent neural networks initialized with “small” weights are inherently biased toward definite memory machines (Tiňno, Čerňanský, & Beňušková, 2002a, 2002b). This article establishes a theoretical counterpart: transition function of recurrent network with small weights and squashing activation function is a contraction. We prove that recurrent networks with contractive transition function can be approximated arbitrarily well on input sequences of unbounded length by a definite memory machine. Conversely, every definite memory machine can be simulated by a recurrent network with contractive transition function. Hence, initialization with small weights induces an architectural bias into learning with recurrent neural networks. This bias might have benefits from the point of view of statistical learning theory: it emphasizes one possible region of the weight space where generalization ability can be formally proved. It is well known that standard recurrent neural networks are not distribution independent learnable in the probably approximately correct (PAC) sense if arbitrary precision and inputs are considered. We prove that recurrent networks with contractive transition function with a fixed contraction parameter fulfill the so-called distribution independent uniform convergence of empirical distances property and hence, unlike general recurrent networks, are distribution independent PAC learnable.

Bibliography

Hammer, B., & Tiňo, P. (2003). Recurrent Neural Networks with Small Weights Implement Definite Memory Machines. Neural Computation, 15(8), 1897–1929.

Authors 2
  1. Barbara Hammer (first)
  2. Peter Tiňo (additional)
References 32 Referenced 42
  1. 10.1162/neco.1989.1.1.151
  2. 10.1109/72.536317
  3. 10.1109/72.279181
  4. 10.1214/aos/1018031204
  5. 10.1109/69.917555
  6. 10.1207/s15516709cog2302_2
  7. 10.1109/72.623208
  8. {'issue': '6', 'key': 'p_13', 'first-page': '313', 'volume': '8', 'author': 'Frasconi P.', 'year': '1995', 'journal-title': 'IEEE Transactions on Knowledge and Data Engineering'} / IEEE Transactions on Knowledge and Data Engineering by Frasconi P. (1995)
  9. {'key': 'p_14', 'first-page': '831', 'volume': '12', 'author': 'Funahashi K.', 'year': '1993', 'journal-title': 'Neural Networks'} / Neural Networks by Funahashi K. (1993)
  10. 10.1016/0893-6080(95)00041-0
  11. 10.1007/PL00009845
  12. 10.1109/69.917560
  13. 10.1016/0890-5401(92)90010-D
  14. 10.1162/neco.1997.9.8.1735
  15. 10.1016/S0893-6080(09)80018-X
  16. 10.1016/0893-6080(89)90020-8
  17. 10.1007/BF01000408
  18. 10.1162/089976698300017359
  19. 10.1162/089976699300016656
  20. 10.1126/science.267326
  21. 10.1109/TASSP.1984.1164378
  22. 10.1145/235809.235811
  23. 10.1162/neco.1996.8.4.675
  24. 10.1007/BF00114008
  25. {'key': 'p_42', 'first-page': '145', 'volume': '1', 'author': 'Sejnowski T.', 'year': '1987', 'journal-title': 'Complex Systems'} / Complex Systems by Sejnowski T. (1987)
  26. 10.1109/18.705570
  27. 10.1016/0304-3975(94)90178-3
  28. 10.1006/jcss.1995.1013
  29. 10.1016/0022-0000(92)90039-L
  30. 10.1023/A:1010972803901
  31. {'key': 'p_53', 'first-page': '822', 'volume': '4', 'author': 'Tio P.', 'year': '1995', 'journal-title': 'Neural Computation'} / Neural Computation by Tio P. (1995)
  32. 10.1109/29.21701
Dates
Type When
Created 22 years, 1 month ago (July 16, 2003, 5:24 p.m.)
Deposited 4 years, 5 months ago (March 12, 2021, 4:50 p.m.)
Indexed 4 months, 3 weeks ago (April 15, 2025, 2:11 a.m.)
Issued 22 years, 1 month ago (Aug. 1, 2003)
Published 22 years, 1 month ago (Aug. 1, 2003)
Published Print 22 years, 1 month ago (Aug. 1, 2003)
Funders 0

None

@article{Hammer_2003, title={Recurrent Neural Networks with Small Weights Implement Definite Memory Machines}, volume={15}, ISSN={1530-888X}, url={http://dx.doi.org/10.1162/08997660360675080}, DOI={10.1162/08997660360675080}, number={8}, journal={Neural Computation}, publisher={MIT Press - Journals}, author={Hammer, Barbara and Tiňo, Peter}, year={2003}, month=aug, pages={1897–1929} }