Crossref journal-article
Ovid Technologies (Wolters Kluwer Health)
Circulation Research (276)
Abstract

Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis—the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton—microfilaments, microtubules, and intermediate filaments—also contribute to the cell’s structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.

Bibliography

Ingber, D. E. (2002). Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology. Circulation Research, 91(10), 877–887.

Authors 1
  1. Donald E. Ingber (first)
References 95 Referenced 505
  1. Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat. 1938; 64: 251–301. / Am J Anat (1938)
  2. Ingber DE Jamieson JD. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson LC Gahmberg CG Ekblom P eds. Gene Expression During Normal and Malignant Differentiation. Orlando Fla: Academic Press; 1985: 13–32.
  3. 10.1038/13043
  4. 10.1016/0026-2862(77)90141-8
  5. Bernfield MR Banerjee SD. The basal lamina in epithelial-mesenchymal interactions. In: Kefalides N ed. Biology and Chemistry of Basement Membranes. New York NY: Academic; 1978: 137–148.
  6. 10.1210/endo-119-4-1768
  7. Ingber DE, Folkman J. Inhibition of angiogenesis through inhibition of collagen metabolism. Lab Invest. 1988; 59: 44–51. / Lab Invest (1988)
  8. 10.1083/jcb.109.1.317
  9. 10.1073/pnas.87.9.3579
  10. 10.1126/science.276.5317.1425
  11. 10.1091/mbc.9.11.3179
  12. 10.1006/excr.2002.5504
  13. 10.1007/s11626-999-0050-4
  14. 10.1091/mbc.12.10.3087
  15. 10.1096/fj.02-0038com
  16. 10.1006/bbrc.2001.6243
  17. 10.1021/bp980031m
  18. 10.1242/jcs.113.22.3979
  19. Lee K-M, Tsai K, Wang N, Ingber DE. Extracellular matrix and pulmonary hypertension: control of vascular smooth muscle cell contractility. Am J Physiol. 1997; 274: H76–H82. / Am J Physiol (1997)
  20. 10.1002/jcp.1041510308
  21. 10.1126/science.8171320
  22. 10.1242/jcs.104.3.613
  23. Ingber DE. The architecture of life. Sci Am. 1998; 278: 48–57. / Sci Am (1998)
  24. 10.1016/0955-0674(91)90058-7
  25. 10.1146/annurev.physiol.59.1.575
  26. 10.1083/jcb.117.1.73
  27. 10.1242/jcs.111.13.1897
  28. 10.1152/ajpcell.2000.279.1.C188
  29. 10.1242/jcs.93.2.255
  30. 10.1073/pnas.92.22.10252
  31. 10.1073/pnas.141199598
  32. 10.1016/S0896-6273(00)80249-4
  33. 10.1006/jtbi.1996.0120
  34. 10.1007/s10237-002-0009-9
  35. 10.1006/jtbi.1999.1014
  36. 10.1115/1.429631
  37. 10.1126/science.7684161
  38. 10.1016/S0006-3495(94)81014-8
  39. 10.1139/o95-001
  40. 10.1152/ajpcell.1998.274.5.C1283
  41. 10.1073/pnas.94.3.849
  42. 10.1152/jappl.2000.89.4.1663
  43. 10.1006/bbrc.2000.3636
  44. 10.1038/35023621
  45. 10.1038/33719
  46. Ingber DE. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell. 1993; 75: 1249–1252. / Cell (1993)
  47. 10.1016/S0074-7696(08)60105-9
  48. 10.1083/jcb.101.3.697
  49. 10.1002/cm.970170103
  50. 10.1242/jcs.111.22.3379
  51. Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Science STKE. 2002; 119: pe6.Available at: http://www.stke.org/cgi/content/full/OC_sigtrans;2002/119/pe6. / Science STKE (2002)
  52. 10.1091/mbc.6.10.1349
  53. 10.1006/excr.1996.0118
  54. 10.1083/jcb.131.3.791
  55. 10.1126/science.168639
  56. 10.1016/0021-9290(95)00092-5
  57. 10.1172/JCI118293
  58. D’Angelo G, Mogford JE, Davis GE, Davis MJ, Meininger GA. Integrin-mediated reduction in vascular smooth muscle [Ca2+]i induced by RGD-containing peptide. Am J Physiol. 1997; 272: H2065–H2070. / Am J Physiol (1997)
  59. 10.1074/jbc.274.26.18393
  60. 10.1161/res.87.7.558
  61. 10.1152/ajpcell.2001.280.6.C1475
  62. 10.1161/res.88.7.674
  63. 10.3109/10623320109090806
  64. 10.1161/atvb.22.1.69
  65. 10.1161/hyp.39.2.502
  66. 10.1096/cj.01-0104hyp
  67. 10.1161/atvb.22.1.76
  68. 10.1161/hh0402.105899
  69. 10.1073/pnas.98.3.1042
  70. Iwig M, Czeslick E, Muller A, Gruner M, Spindler M, Glaesser D. Growth regulation by cell shape alteration and organization of the cytoskeleton. Eur J Cell Biol. 1995; 67: 145–157. / Eur J Cell Biol (1995)
  71. 10.1091/mbc.7.1.101
  72. 10.1006/excr.1996.3451
  73. 10.1016/S0955-0674(98)80145-2
  74. 10.1083/jcb.141.2.539
  75. 10.1139/o96-080
  76. Berman M, Winthrop S, Ausprunk D, Rose J, Langer R, Gage J. Plasminogen activator (urokinase) causes vascularization of the cornea. Invest Ophthalmol Vis Sci. 1982; 22: 191–199. / Invest Ophthalmol Vis Sci (1982)
  77. 10.1006/jsre.2002.6418
  78. Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest. 1992; 66: 536–547. / Lab Invest (1992)
  79. 10.1242/jcs.112.19.3249
  80. 10.1016/S0955-0674(97)80125-1
  81. 10.1152/physrev.1995.75.3.519
  82. 10.1016/0092-8674(94)90007-8
  83. Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997; 57: 81–86. / Cancer Res (1997)
  84. 10.1161/circ.96.2.636
  85. 10.1074/jbc.M100743200
  86. 10.1073/pnas.96.6.2645
  87. 10.1002/jcp.10040
  88. 10.1016/S0006-3495(01)76006-7
  89. 10.1126/science.8097594
  90. 10.1016/S0735-1097(00)01207-9
  91. 10.1161/res.80.2.281
  92. 10.1016/S0008-6363(01)00500-4
  93. 10.1096/fj.01-0505fje
  94. 10.1016/S0002-9440(10)64055-2
  95. 10.1006/excr.2000.5044
Dates
Type When
Created 22 years, 9 months ago (Nov. 14, 2002, 6:02 p.m.)
Deposited 1 year, 3 months ago (May 12, 2024, 2:39 p.m.)
Indexed 3 days, 7 hours ago (Sept. 3, 2025, 6:28 a.m.)
Issued 22 years, 9 months ago (Nov. 15, 2002)
Published 22 years, 9 months ago (Nov. 15, 2002)
Published Print 22 years, 9 months ago (Nov. 15, 2002)
Funders 0

None

@article{Ingber_2002, title={Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology}, volume={91}, ISSN={1524-4571}, url={http://dx.doi.org/10.1161/01.res.0000039537.73816.e5}, DOI={10.1161/01.res.0000039537.73816.e5}, number={10}, journal={Circulation Research}, publisher={Ovid Technologies (Wolters Kluwer Health)}, author={Ingber, Donald E.}, year={2002}, month=nov, pages={877–887} }