Abstract
Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis—the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton—microfilaments, microtubules, and intermediate filaments—also contribute to the cell’s structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
References
95
Referenced
505
- Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat. 1938; 64: 251–301. / Am J Anat (1938)
- Ingber DE Jamieson JD. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Andersson LC Gahmberg CG Ekblom P eds. Gene Expression During Normal and Malignant Differentiation. Orlando Fla: Academic Press; 1985: 13–32.
10.1038/13043
10.1016/0026-2862(77)90141-8
- Bernfield MR Banerjee SD. The basal lamina in epithelial-mesenchymal interactions. In: Kefalides N ed. Biology and Chemistry of Basement Membranes. New York NY: Academic; 1978: 137–148.
10.1210/endo-119-4-1768
- Ingber DE, Folkman J. Inhibition of angiogenesis through inhibition of collagen metabolism. Lab Invest. 1988; 59: 44–51. / Lab Invest (1988)
10.1083/jcb.109.1.317
10.1073/pnas.87.9.3579
10.1126/science.276.5317.1425
10.1091/mbc.9.11.3179
10.1006/excr.2002.5504
10.1007/s11626-999-0050-4
10.1091/mbc.12.10.3087
10.1096/fj.02-0038com
10.1006/bbrc.2001.6243
10.1021/bp980031m
10.1242/jcs.113.22.3979
- Lee K-M, Tsai K, Wang N, Ingber DE. Extracellular matrix and pulmonary hypertension: control of vascular smooth muscle cell contractility. Am J Physiol. 1997; 274: H76–H82. / Am J Physiol (1997)
10.1002/jcp.1041510308
10.1126/science.8171320
10.1242/jcs.104.3.613
- Ingber DE. The architecture of life. Sci Am. 1998; 278: 48–57. / Sci Am (1998)
10.1016/0955-0674(91)90058-7
10.1146/annurev.physiol.59.1.575
10.1083/jcb.117.1.73
10.1242/jcs.111.13.1897
10.1152/ajpcell.2000.279.1.C188
10.1242/jcs.93.2.255
10.1073/pnas.92.22.10252
10.1073/pnas.141199598
10.1016/S0896-6273(00)80249-4
10.1006/jtbi.1996.0120
10.1007/s10237-002-0009-9
10.1006/jtbi.1999.1014
10.1115/1.429631
10.1126/science.7684161
10.1016/S0006-3495(94)81014-8
10.1139/o95-001
10.1152/ajpcell.1998.274.5.C1283
10.1073/pnas.94.3.849
10.1152/jappl.2000.89.4.1663
10.1006/bbrc.2000.3636
10.1038/35023621
10.1038/33719
- Ingber DE. The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell. 1993; 75: 1249–1252. / Cell (1993)
10.1016/S0074-7696(08)60105-9
10.1083/jcb.101.3.697
10.1002/cm.970170103
10.1242/jcs.111.22.3379
- Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Science STKE. 2002; 119: pe6.Available at: http://www.stke.org/cgi/content/full/OC_sigtrans;2002/119/pe6. / Science STKE (2002)
10.1091/mbc.6.10.1349
10.1006/excr.1996.0118
10.1083/jcb.131.3.791
10.1126/science.168639
10.1016/0021-9290(95)00092-5
10.1172/JCI118293
- D’Angelo G, Mogford JE, Davis GE, Davis MJ, Meininger GA. Integrin-mediated reduction in vascular smooth muscle [Ca2+]i induced by RGD-containing peptide. Am J Physiol. 1997; 272: H2065–H2070. / Am J Physiol (1997)
10.1074/jbc.274.26.18393
10.1161/res.87.7.558
10.1152/ajpcell.2001.280.6.C1475
10.1161/res.88.7.674
10.3109/10623320109090806
10.1161/atvb.22.1.69
10.1161/hyp.39.2.502
10.1096/cj.01-0104hyp
10.1161/atvb.22.1.76
10.1161/hh0402.105899
10.1073/pnas.98.3.1042
- Iwig M, Czeslick E, Muller A, Gruner M, Spindler M, Glaesser D. Growth regulation by cell shape alteration and organization of the cytoskeleton. Eur J Cell Biol. 1995; 67: 145–157. / Eur J Cell Biol (1995)
10.1091/mbc.7.1.101
10.1006/excr.1996.3451
10.1016/S0955-0674(98)80145-2
10.1083/jcb.141.2.539
10.1139/o96-080
- Berman M, Winthrop S, Ausprunk D, Rose J, Langer R, Gage J. Plasminogen activator (urokinase) causes vascularization of the cornea. Invest Ophthalmol Vis Sci. 1982; 22: 191–199. / Invest Ophthalmol Vis Sci (1982)
10.1006/jsre.2002.6418
- Vernon RB, Angello JC, Iruela-Arispe ML, Lane TF, Sage EH. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest. 1992; 66: 536–547. / Lab Invest (1992)
10.1242/jcs.112.19.3249
10.1016/S0955-0674(97)80125-1
10.1152/physrev.1995.75.3.519
10.1016/0092-8674(94)90007-8
- Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res. 1997; 57: 81–86. / Cancer Res (1997)
10.1161/circ.96.2.636
10.1074/jbc.M100743200
10.1073/pnas.96.6.2645
10.1002/jcp.10040
10.1016/S0006-3495(01)76006-7
10.1126/science.8097594
10.1016/S0735-1097(00)01207-9
10.1161/res.80.2.281
10.1016/S0008-6363(01)00500-4
10.1096/fj.01-0505fje
10.1016/S0002-9440(10)64055-2
10.1006/excr.2000.5044
Dates
Type | When |
---|---|
Created | 22 years, 9 months ago (Nov. 14, 2002, 6:02 p.m.) |
Deposited | 1 year, 3 months ago (May 12, 2024, 2:39 p.m.) |
Indexed | 3 days, 7 hours ago (Sept. 3, 2025, 6:28 a.m.) |
Issued | 22 years, 9 months ago (Nov. 15, 2002) |
Published | 22 years, 9 months ago (Nov. 15, 2002) |
Published Print | 22 years, 9 months ago (Nov. 15, 2002) |
@article{Ingber_2002, title={Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology}, volume={91}, ISSN={1524-4571}, url={http://dx.doi.org/10.1161/01.res.0000039537.73816.e5}, DOI={10.1161/01.res.0000039537.73816.e5}, number={10}, journal={Circulation Research}, publisher={Ovid Technologies (Wolters Kluwer Health)}, author={Ingber, Donald E.}, year={2002}, month=nov, pages={877–887} }