Crossref journal-article
American Association for Cancer Research (AACR)
Clinical Cancer Research (1086)
Abstract

Abstract p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target because it can be functionally activated to eradicate tumors. The gene encoding p53 protein is mutated or deleted in half of human cancers, which inactivates its tumor suppressor activity. In the remaining cancers with wild-type p53 status, its function is effectively inhibited through direct interaction with the human murine double minute 2 (MDM2) oncoprotein. Blocking the MDM2-p53 interaction to reactivate the p53 function is a promising cancer therapeutic strategy. This review will highlight the advances in the design and development of small-molecule inhibitors of the MDM2-p53 interaction as a cancer therapeutic approach.

Bibliography

Shangary, S., & Wang, S. (2008). Targeting the MDM2-p53 Interaction for Cancer Therapy. Clinical Cancer Research, 14(17), 5318–5324.

Authors 2
  1. Sanjeev Shangary (first)
  2. Shaomeng Wang (additional)
References 68 Referenced 274
  1. Teodoro JG, Evans SK, Green MR. Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 2007;85:1175–86. (10.1007/s00109-007-0221-2)
  2. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003;22:9030–40. (10.1038/sj.onc.1207116)
  3. Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer 2002;2:594–604. (10.1038/nrc864)
  4. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–3. (10.1038/278261a0)
  5. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 1979;76:2420–4. (10.1073/pnas.76.5.2420)
  6. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 1979;17:43–52. (10.1016/0092-8674(79)90293-9)
  7. Oren M, Levine AJ. Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci U S A 1983;80:56–9. (10.1073/pnas.80.1.56)
  8. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989;57:1083–93. (10.1016/0092-8674(89)90045-7)
  9. Koshland DE, Jr. Molecule of the year. Science 1993;262:1953. (10.1126/science.8266084)
  10. Feki A, Irminger-Finger I. Mutational spectrum of p53 mutations in primary breast and ovarian tumors. Crit Rev Oncol Hematol 2004;52:103–16. (10.1016/j.critrevonc.2004.07.002)
  11. Fakharzadeh SS, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 1991;10:1565–9. (10.1002/j.1460-2075.1991.tb07676.x)
  12. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992;358:80–3. (10.1038/358080a0)
  13. Momand J, Jung D, Wilczynski S, Niland J. The MDM2 gene amplification database. Nucleic Acids Res 1998;26:3453–9. (10.1093/nar/26.15.3453)
  14. Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237–45. (10.1016/0092-8674(92)90644-R)
  15. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev 1993;7:1126–32. (10.1101/gad.7.7a.1126)
  16. Chen J, Marechal V, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 1993;13:4107–14. (10.1128/MCB.13.7.4107)
  17. Freedman DA, Levine AJ. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 1998;18:7288–93. (10.1128/MCB.18.12.7288)
  18. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296–9. (10.1038/387296a0)
  19. Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995;378:206–8. (10.1038/378206a0)
  20. Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995;378:203–6. (10.1038/378203a0)
  21. Picksley SM, Vojtesek B, Sparks A, Lane DP. Immunochemical analysis of the interaction of p53 with MDM2;-fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 1994;9:2523–9.
  22. Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996;274:948–53. (10.1126/science.274.5289.948)
  23. Kastan MB. Wild-type p53: tumors can't stand it. Cell 2007;128:837–40. (10.1016/j.cell.2007.02.022)
  24. Vassilev LT. MDM2 inhibitors for cancer therapy. Trends Mol Med 2007;13:23–31. (10.1016/j.molmed.2006.11.002)
  25. Wiman KG. Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 2006;13:921–6. (10.1038/sj.cdd.4401921)
  26. Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004;303:844–8. (10.1126/science.1092472)
  27. Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A 2006;103:1888–93. (10.1073/pnas.0507493103)
  28. Sarek G, Kurki S, Enback J, et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 2007;117:1019–28. (10.1172/JCI30945)
  29. Koblish HK, Zhao S, Franks CF, et al. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 2006;5:160–9. (10.1158/1535-7163.MCT-05-0199)
  30. Grasberger BL, Lu T, Schubert C, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 2005;48:909–12. (10.1021/jm049137g)
  31. Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005;127:10130–1. (10.1021/ja051147z)
  32. Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2–53 interaction. J Med Chem 2006;49:3432–5. (10.1021/jm051122a)
  33. Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 2008;105:3933–8. (10.1073/pnas.0708917105)
  34. Hu B, Gilkes DM, Farooqi B, Sebti SM, Chen J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J Biol Chem 2006;281:33030–5. (10.1074/jbc.C600147200)
  35. Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 2006;66:3169–76. (10.1158/0008-5472.CAN-05-3832)
  36. Wade M, Wong ET, Tang M, Stommel JM, Wahl GM. Hdmx modulates the outcome of p53 activation in human tumor cells. J Biol Chem 2006;281:33036–44. (10.1074/jbc.M605405200)
  37. Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the p53 pathway in retinoblastoma. Nature 2006;444:61–6. (10.1038/nature05194)
  38. Thompson T, Tovar C, Yang H, et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 2004;279:53015–22. (10.1074/jbc.M410233200)
  39. Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. Eur J Biochem 2001;268:2784–91. (10.1046/j.1432-1327.2001.02228.x)
  40. Efeyan A, Ortega-Molina A, Velasco-Miguel S, Herranz D, Vassilev LT, Serrano M. Induction of p53-Dependent Senescence by the MDM2 Antagonist Nutlin-3a in Mouse Cells of Fibroblast Origin. Cancer Res 2007;67:7350–7. (10.1158/0008-5472.CAN-07-0200)
  41. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847–9. (10.1038/362847a0)
  42. Potten CS, Wilson JW, Booth C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithelium. Stem Cells 1997;15:82–93. (10.1002/stem.150082)
  43. Ringshausen I, O'Shea CC, Finch AJ, Swigart LB, Evan GI. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 2006;10:501–14. (10.1016/j.ccr.2006.10.010)
  44. Bottger V, Bottger A, Garcia-Echeverria C, et al. Comparative study of the p53–mdm2 and p53-MDMX interfaces. Oncogene 1999;18:189–99. (10.1038/sj.onc.1202281)
  45. Kawai H, Wiederschain D, Kitao H, Stuart J, Tsai KK, Yuan ZM. DNA damage-induced MDMX degradation is mediated by MDM2. J Biol Chem 2003;278:45946–53. (10.1074/jbc.M308295200)
  46. Lau LM, Nugent JK, Zhao X, Irwin MS. HDM2 antagonist Nutlin-3 disrupts p73–2 binding and enhances p73 function. Oncogene 2008;27:997–1003. (10.1038/sj.onc.1210707)
  47. Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007;26:3473–81. (10.1038/sj.onc.1210136)
  48. LaRusch GA, Jackson MW, Dunbar JD, Warren RS, Donner DB, Mayo LD. Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1α and Hdm2. Cancer Res 2007;67:450–4. (10.1158/0008-5472.CAN-06-2710)
  49. Colaluca IN, Tosoni D, Nuciforo P, et al. NUMB controls p53 tumour suppressor activity. Nature 2008;451:76–80. (10.1038/nature06412)
  50. Secchiero P, Corallini F, Gonelli A, et al. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 2007;100:61–9. (10.1161/01.RES.0000253975.76198.ff)
  51. Binder BR. A novel application for murine double minute 2 antagonists: the p53 tumor suppressor network also controls angiogenesis. Circ Res 2007;100:13–4. (10.1161/01.RES.0000255897.84337.38)
  52. Ravi R, Mookerjee B, Bhujwalla ZM, et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1α. Genes Dev 2000;14:34–44. (10.1101/gad.14.1.34)
  53. Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT. Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005;65:1918–24. (10.1158/0008-5472.CAN-04-3576)
  54. Kojima K, Konopleva M, McQueen T, O'Brien S, Plunkett W, Andreeff M. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006;108:993–1000. (10.1182/blood-2005-12-5148)
  55. Saddler C, Ouillette P, Kujawski L, et al. Comprehensive biomarker and genomic analysis identifies P53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood 2007;111:1584–93. (10.1182/blood-2007-09-112698)
  56. Kojima K, Konopleva M, Samudio IJ, et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005;106:3150–9. (10.1182/blood-2005-02-0553)
  57. Xia M, Knezevic D, Tovar C, Huang B, Heimbrook DC, Vassilev LT. Elevated MDM2 boosts the apoptotic activity of p53–2 binding inhibitors by facilitating MDMX degradation. Cell Cycle 2008;7:1604–12. (10.4161/cc.7.11.5929)
  58. Bond GL, Hu W, Bond EE, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591–602. (10.1016/j.cell.2004.11.022)
  59. Bond GL, Levine AJ. A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 2007;26:1317–23. (10.1038/sj.onc.1210199)
  60. Cattelani S, Defferrari R, Marsilio S, et al. Impact of a Single Nucleotide Polymorphism in the MDM2 Gene on Neuroblastoma Development and Aggressiveness: Results of a Pilot Study on 239 Patients. Clin Cancer Res 2008;14:3248–53. (10.1158/1078-0432.CCR-07-4725)
  61. Rayburn E, Zhang R, He J, Wang H. MDM2 and human malignancies: expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets 2005;5:27–41. (10.2174/1568009053332636)
  62. Secchiero P, Barbarotto E, Tiribelli M, et al. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006;107:4122–9. (10.1182/blood-2005-11-4465)
  63. Coll-Mulet L, Iglesias-Serret D, Santidrian AF, et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006;107:4109–14. (10.1182/blood-2005-08-3273)
  64. Secchiero P, Zerbinati C, di Iasio MG, et al. Synergistic cytotoxic activity of recombinant TRAIL plus the non-genotoxic activator of the p53 pathway nutlin-3 in acute myeloid leukemia cells. Curr Drug Metab 2007;8:395–403. (10.2174/138920007780655432)
  65. Drakos E, Thomaides A, Medeiros LJ, et al. Inhibition of p53-murine double minute 2 interaction by nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res 2007;13:3380–7. (10.1158/1078-0432.CCR-06-2581)
  66. Kranz D, Dobbelstein M. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 2006;66:10274–80. (10.1158/0008-5472.CAN-06-1527)
  67. Yang H, Filipovic Z, Brown D, Breit SN, Vassilev LT. Macrophage inhibitory cytokine-1: a novel biomarker for p53 pathway activation. Mol Cancer Ther 2003;2:1023–9.
  68. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 2006;127:1323–34. (10.1016/j.cell.2006.12.007)
Dates
Type When
Created 16 years, 11 months ago (Sept. 2, 2008, 10:59 a.m.)
Deposited 3 years, 2 months ago (June 10, 2022, 11:08 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 6, 2025, 9:45 a.m.)
Issued 16 years, 11 months ago (Sept. 1, 2008)
Published 16 years, 11 months ago (Sept. 1, 2008)
Published Online 16 years, 11 months ago (Sept. 2, 2008)
Published Print 16 years, 11 months ago (Sept. 1, 2008)
Funders 0

None

@article{Shangary_2008, title={Targeting the MDM2-p53 Interaction for Cancer Therapy}, volume={14}, ISSN={1557-3265}, url={http://dx.doi.org/10.1158/1078-0432.ccr-07-5136}, DOI={10.1158/1078-0432.ccr-07-5136}, number={17}, journal={Clinical Cancer Research}, publisher={American Association for Cancer Research (AACR)}, author={Shangary, Sanjeev and Wang, Shaomeng}, year={2008}, month=sep, pages={5318–5324} }