Crossref journal-article
American Association for Cancer Research (AACR)
Clinical Cancer Research (1086)
Abstract

Abstract Plasma protein profiling using separations coupled to matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has great potential in translational research; it can be used for biomarker discovery and contribute to disease diagnosis and therapy. Previously reported biomarker searches have been done solely by MS protein profiling followed by bioinformatics analysis of the data. To add to current methods, we tested an alternative strategy for plasma protein profiling using pancreatic cancer as the model. First, offline solid-phase extraction is done with 96-well plates to fractionate and partially purify the proteins. Then, multiple profiling and identification experiments can be conducted on the same protein fractions because only 5% of the fractions are used for MALDI MS profiling. After MALDI MS analysis, the mass spectra are normalized and subjected to a peak detection algorithm. Over three sets of mass spectra acquired using different instrument variables, ∼400 unique ion signals were detected. Classification schemes employing as many as eight individual peaks were developed using a training set with 123 members (82 cancer patients) and a blinded validation set with 125 members (57 cancer patients). The sensitivity of the study was 88%, but the specificity was significantly lower, 75%. The reason for the low specificity becomes apparent upon protein identification of the ion signals used for the classification. The identifications reveal only common serum proteins and components of the acute phase response, including serum amyloid A, α-1-antitrypsin, α-1-antichymotrypsin, and inter-α-trypsin inhibitor.

Bibliography

Koomen, J. M., Shih, L. N., Coombes, K. R., Li, D., Xiao, L., Fidler, I. J., Abbruzzese, J. L., & Kobayashi, R. (2005). Plasma Protein Profiling for Diagnosis of Pancreatic Cancer Reveals the Presence of Host Response Proteins. Clinical Cancer Research, 11(3), 1110–1118.

Authors 8
  1. John M. Koomen (first)
  2. Lichen Nancy Shih (additional)
  3. Kevin R. Coombes (additional)
  4. Donghui Li (additional)
  5. Lian-chun Xiao (additional)
  6. Isaiah J. Fidler (additional)
  7. James L. Abbruzzese (additional)
  8. Ryuji Kobayashi (additional)
References 54 Referenced 137
  1. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359:572–7. (10.1016/S0140-6736(02)07746-2)
  2. Steel LF, Shumpert D, Trotter M, et al. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics 2003;3:601–9. (10.1002/pmic.200300399)
  3. Rai AJ, Zhang Z, Rosenzweig J, et al. Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 2002;126:1518–26. (10.5858/2002-126-1518-PATTMD)
  4. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW. Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem 2002;48:1296–304. (10.1093/clinchem/48.8.1296)
  5. Adam B-L, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res 2002;62:3609–14.
  6. Srinivas PR, Srivastava S, Hanash S, Wright GL Jr. Proteomics in early detection of cancer. Clin Chem 2001;47:1901–11. (10.1093/clinchem/47.10.1901)
  7. Seliger B, Kellner R. Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics 2002;2:1641–51. (10.1002/1615-9861(200212)2:12<1641::AID-PROT1641>3.0.CO;2-B)
  8. Bergquist J, Palmblad M, Wetterhall M, Hakansson P, Markides KE. Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom Rev 2002;21:2–15. (10.1002/mas.10016)
  9. Rosty C, Christa L, Kuzdzal S, et al. Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res 2002;62:1868–75.
  10. Heine G, Zucht H-D, Schuhmann MU, et al. High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases. J Chromatogr B 2002;782:353–61. (10.1016/S1570-0232(02)00571-8)
  11. Desiderio D. Mass spectrometric analysis of neuropeptidergic systems in the human pituitary and cerebrospinal fluid. J Chromatogr B 1999;731:3–22. (10.1016/S0378-4347(99)00172-3)
  12. Vlahou A, Schellhammer PF, Mendrinos S, et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am J Pathol 2001;158:1491–502. (10.1016/S0002-9440(10)64100-4)
  13. Spahr CS, Davis MT, McGinley MD, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry. I. Profiling an unfractionated tryptic digest. Proteomics 2001;1:93–107. (10.1002/1615-9861(200101)1:1<93::AID-PROT93>3.0.CO;2-3)
  14. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17:994–9. (10.1038/13690)
  15. Sinz A, Bantscheff M, Mikkat S, et al. Mass spectrometric proteome analyses of synovial fluids and plasmas from patients suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis. Electrophoresis 2002;23:3445–56. (10.1002/1522-2683(200210)23:19<3445::AID-ELPS3445>3.0.CO;2-J)
  16. Catinella S, Seraglia R, Marsilio R. Evaluation of protein profile of human milk by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 1999;13:1546–9. (10.1002/(SICI)1097-0231(19990730)13:14<1546::AID-RCM682>3.0.CO;2-1)
  17. Palmer-Toy DE, Sarracino DA, Sgroi D, LeVangie R, Leopold PE. Direct acquisition of matrix-assisted laser desorption/ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem 2000;46:1513–6. (10.1093/clinchem/46.9.1513)
  18. Xu BJ, Caprioli RM, Sanders ME, Jensen RA. Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom 2002;13:1292–7. (10.1016/S1044-0305(02)00644-X)
  19. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 1997;69:4751–60. (10.1021/ac970888i)
  20. Stoeckli M, Farmer TB, Caprioli RM. Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom 1999;10:67–71. (10.1016/S1044-0305(98)00126-3)
  21. Hutchens TW, Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 1993;7:576–80. (10.1002/rcm.1290070703)
  22. Weinberger SR, Boschetti E, Santambien P, Brenac V. Surface-enhanced laser desorption-ionization retentate chromatography mass spectrometry (SELDI-RC-MS): a new method for rapid development of process chromatography conditions. J. Chromatogr B Analyt Technol Biomed Life Sci 2002;782:307–16. (10.1016/S1570-0232(02)00564-0)
  23. Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. SELDI-TOF MS for diagnostic proteomics. Anal Chem 2003;75:148–55A. (10.1021/ac031249c)
  24. Coombes KR, Fritsche HA Jr, Clarke C, et al. Quality control and peak finding for proteomics data collected from nipple aspirate fluid using surface enhanced laser desorption and ionization. Clin Chem 2003;49:1615–23. (10.1373/49.10.1615)
  25. Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003;19:1236–42. (10.1093/bioinformatics/btg148)
  26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 1995;57:289–300. (10.1111/j.2517-6161.1995.tb02031.x)
  27. Baggerly KA, Morris JS, Wang J, Gold D, Xiao LC, Coombes KR. A comprehensive approach to the analysis of MALDI-TOF proteomics spectra from serum samples. Proteomics 2003;3:1667–7. (10.1002/pmic.200300522)
  28. Mardia KV, Kent JT, Bibby JM. Multivariate analysis. New York: Academic Press; 1979.
  29. Holland J. Adaptation in natural and artificial systems, 3rd ed. Cambridge (MA): MIT Press; 1994.
  30. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading (MA): Addison-Wesley; 1989.
  31. Diamandis EP. Analysis of serum proteomic patterns for early cancer diagnosis: drawing attention to potential problems. J Natl Cancer Inst 2004;96:353–6. (10.1093/jnci/djh056)
  32. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics 2004;3:367–78. (10.1074/mcp.R400007-MCP200)
  33. Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Detection of novel truncated forms of human serum amyloid A protein in human plasma. FEBS Lett 2003;537:166–70. (10.1016/S0014-5793(03)00097-8)
  34. Koopmann J, Zhang Z, White N, et al. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res 2004;10:860–8. (10.1158/1078-0432.CCR-1167-3)
  35. Cho WC, Yip TT, Yip C, et al. Identification of serum amyloid A protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin Cancer Res 2004;10:43–52. (10.1158/1078-0432.CCR-0413-3)
  36. Howard BA, Wang MZ, Campa MJ, Corro C, Fitzgerald MC, Patz EF Jr. Identification and validation of a potential lung cancer serum biomarker detected by matrix-assisted laser desorption/ionization-time of flight spectra analysis. Proteomics 2003;3:1720–4. (10.1002/pmic.200300514)
  37. O'Hanlon DM, Lynch J, Cormican M, Given HF. The acute phase response in breast carcinoma. Anticancer Res 2002;22:1289–93.
  38. Kimura M, Tomita Y, Imai T, et al. Significance of serum amyloid A on the prognosis in patients with renal cell carcinoma. Cancer 2001;92:2072–5. (10.1002/1097-0142(20011015)92:8<2072::AID-CNCR1547>3.0.CO;2-P)
  39. Glojnaric I, Casl MT, Simic D, Lukac J. Serum amyloid A protein (SAA) in colorectal carcinoma. Clin Chem Lab Med 2001;39:129–33. (10.1515/CCLM.2001.022)
  40. Biran H, Friedman N, Neumann L, Pras M, Shainkin-Kestenbaum R. Serum amyloid A (SAA) variations in patients with cancer: correlation with disease activity, stage, primary site, and prognosis. J Clin Pathol 1986;39:794–7. (10.1136/jcp.39.7.794)
  41. Raynes JG, Cooper EH. Comparison of serum amyloid A protein and C-reactive protein concentrations in cancer and non-malignant disease. J Clin Pathol 1983;36:798–803. (10.1136/jcp.36.7.798)
  42. Rosenthal CJ, Sullivan LM. Serum amyloid A to monitor cancer dissemination. Ann Intern Med 1979;91:383–90. (10.7326/0003-4819-91-3-383)
  43. Ye B, Cramer DW, Skates SJ, et al. Haptoglobin-α subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res 2003;9:2904–11.
  44. Whicher J, Biasucci L, Rifai N. Inflammation, the acute phase response and atherosclerosis. Clin Chem Lab Med 1999;37:495–503. (10.1515/CCLM.1999.080)
  45. Lowe GD. The relationship between infection, inflammation, and cardiovascular disease: an overview. Ann Periodontol 2001;6:1–8. (10.1902/annals.2001.6.1.1)
  46. Romette J, di Costanzo-Dufetel J, Charrel M. Inflammatory syndrome and changes in plasma proteins. Pathol Biol (Paris) 1986;34:1006–12.
  47. Jayle MF, Engler R. Different spectra of blood protein changes in inflammatory conditions. Pathol Biol (Paris) 1974;22:645–50.
  48. Haag AM, Chaiban J, Johnston KH, Cole RB. Monitoring of immune response by blood serum profiling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 2001;36:15–20. (10.1002/jms.76)
  49. Irigoyen Oyarzabal AM, Amiguet Garcia JA, Lopez Vivanco G, et al. Tumoral markers and acute-phase reactants in the diagnosis of pancreatic cancer. Gastroenterol Hepatol 2003;26:624–9. (10.1016/S0210-5705(03)70421-X)
  50. Trachte AL, Suthers SE, Lerner MR, et al. Increased expression of α-1-antitrypsin, glutathione S-transferase pi and vascular endothelial growth factor in human pancreatic adenocarcinoma. Am J Surg 2002;184:642–8. (10.1016/S0002-9610(02)01105-4)
  51. Ito T, Kimura T, Nawata H. Serum elastase 1 appears specific for cancer of the pancreatic head. Am J Gastroenterol 1991;86:1778–83.
  52. Buamah PK, Skillen AW. Concentrations of protease and anti-protease in serum of patients with pancreatic cancer. Clin Chem 1985;31:876–7. (10.1093/clinchem/31.6.876)
  53. Trichopoulos D, Tzonou A, Kalapothaki V, Sparos L, Kremastinou T, Skoutari M. α1-Antitrypsin and survival in pancreatic cancer. Int J Cancer 1990;45:685–6. (10.1002/ijc.2910450419)
  54. Lankisch PG, Koop H, Winckler K, Kaboth U. α1-Antitrypsin in pancreatic diseases. Digestion 1978;18:138–40. (10.1159/000198194)
Dates
Type When
Created 3 years, 2 months ago (June 11, 2022, 2:41 p.m.)
Deposited 3 years, 2 months ago (June 11, 2022, 2:41 p.m.)
Indexed 3 weeks, 5 days ago (Aug. 3, 2025, 12:37 a.m.)
Issued 20 years, 6 months ago (Feb. 1, 2005)
Published 20 years, 6 months ago (Feb. 1, 2005)
Published Online 20 years, 6 months ago (Feb. 11, 2005)
Published Print 20 years, 6 months ago (Feb. 1, 2005)
Funders 0

None

@article{Koomen_2005, title={Plasma Protein Profiling for Diagnosis of Pancreatic Cancer Reveals the Presence of Host Response Proteins}, volume={11}, ISSN={1557-3265}, url={http://dx.doi.org/10.1158/1078-0432.1110.11.3}, DOI={10.1158/1078-0432.1110.11.3}, number={3}, journal={Clinical Cancer Research}, publisher={American Association for Cancer Research (AACR)}, author={Koomen, John M. and Shih, Lichen Nancy and Coombes, Kevin R. and Li, Donghui and Xiao, Lian-chun and Fidler, Isaiah J. and Abbruzzese, James L. and Kobayashi, Ryuji}, year={2005}, month=feb, pages={1110–1118} }