Crossref journal-article
American Association for Cancer Research (AACR)
Cancer Research (1086)
Abstract

Abstract Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor–positive cancers (34.5%; P = 0.32), 17 of 75 HER-2–positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a “tumorigenic” signature defined using CD44+/CD24− breast tumor–initiating stem cell–like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell–like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets. [Cancer Res 2009;69(10):4116–24]

Bibliography

Hennessy, B. T., Gonzalez-Angulo, A.-M., Stemke-Hale, K., Gilcrease, M. Z., Krishnamurthy, S., Lee, J.-S., Fridlyand, J., Sahin, A., Agarwal, R., Joy, C., Liu, W., Stivers, D., Baggerly, K., Carey, M., Lluch, A., Monteagudo, C., He, X., Weigman, V., Fan, C., … Mills, G. B. (2009). Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics. Cancer Research, 69(10), 4116–4124.

Authors 27
  1. Bryan T. Hennessy (first)
  2. Ana-Maria Gonzalez-Angulo (additional)
  3. Katherine Stemke-Hale (additional)
  4. Michael Z. Gilcrease (additional)
  5. Savitri Krishnamurthy (additional)
  6. Ju-Seog Lee (additional)
  7. Jane Fridlyand (additional)
  8. Aysegul Sahin (additional)
  9. Roshan Agarwal (additional)
  10. Corwin Joy (additional)
  11. Wenbin Liu (additional)
  12. David Stivers (additional)
  13. Keith Baggerly (additional)
  14. Mark Carey (additional)
  15. Ana Lluch (additional)
  16. Carlos Monteagudo (additional)
  17. Xiaping He (additional)
  18. Victor Weigman (additional)
  19. Cheng Fan (additional)
  20. Juan Palazzo (additional)
  21. Gabriel N. Hortobagyi (additional)
  22. Laura K. Nolden (additional)
  23. Nicholas J. Wang (additional)
  24. Vicente Valero (additional)
  25. Joe W. Gray (additional)
  26. Charles M. Perou (additional)
  27. Gordon B. Mills (additional)
References 53 Referenced 690
  1. Tavassoli FA. (1999). Pathology of the breast. 2nd ed. Hong Kong: Appleton and Lange; 1999.
  2. Hennessy BT, Giordano S, Broglio K, et al. Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol 2006; 17: 605–13. (10.1093/annonc/mdl006)
  3. Hennessy BT, Krishnamurthy S, Giordano S, et al. Squamous cell carcinoma of the breast. J Clin Oncol 2005; 23: 7827–35. (10.1200/JCO.2004.00.9589)
  4. Reis-Filho JS, Milanezi F, Steele D, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology 2006; 49: 10–21. (10.1111/j.1365-2559.2006.02467.x)
  5. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol 1989; 20: 732–40. (10.1016/0046-8177(89)90065-8)
  6. Foschini MP, Dina RE, Eusebi V. Sarcomatoid neoplasms of the breast: proposed definitions for biphasic and monophasic sarcomatoid mammary carcinomas. Semin Diagn Pathol 1993; 10: 128–36.
  7. Gutman H, Pollock RE, Janjan NA, Johnston DA. Biologic distinctions and therapeutic implications of sarcomatoid metaplasia of epithelial carcinoma of the breast. J Am Coll Surg 1995; 180: 193–9.
  8. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98: 10869–74. (10.1073/pnas.191367098)
  9. Herschkowitz JI, Simin K, Weigman VJ, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76. (10.1186/gb-2007-8-5-r76)
  10. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673–84. (10.1056/NEJMoa052122)
  11. Pinkel D, Segraves R, Sudar D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–11. (10.1038/2524)
  12. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer. Cancer Res 2008; 68: 6084–91. (10.1158/0008-5472.CAN-07-6854)
  13. Chin K, DeVries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006; 10: 529–41. (10.1016/j.ccr.2006.10.009)
  14. Fridlyand J, Snijders AM, Ylstra B, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 2006; 6: 96. (10.1186/1471-2407-6-96)
  15. Hu Z, Fan C, Oh DS, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006; 7: 96. (10.1186/1471-2164-7-96)
  16. Snijders AM, Schmidt BL, Fridlyand J, et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 2005; 24: 4232–42. (10.1038/sj.onc.1208601)
  17. Snijders AM, Nowak N, Segraves R, et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 2001; 29: 263–4. (10.1038/ng754)
  18. Janne PA, Li C, Zhao X, et al. High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines. Oncogene 2004; 23: 2716–26. (10.1038/sj.onc.1207329)
  19. Tartaglia M, Pennacchio LA, Zhao C, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet 2007; 39: 75–9. (10.1038/ng1939)
  20. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet 2007; 39: 347–51. (10.1038/ng1975)
  21. West RB, Nuyten DS, Subramanian S, et al. Determination of stromal signatures in breast carcinoma. PLoS Biol 2005; 3: e187. (10.1371/journal.pbio.0030187)
  22. Tibes R, Qiu Y, Lu Y, Hennessy B, Mills GB, Kornblau S. Reverse phase protein array (RPPA): validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther 2006; 5: 2512–21. (10.1158/1535-7163.MCT-06-0334)
  23. Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218–24. (10.1038/ncb1537)
  24. Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB. Non-parametric quantification of protein lysate arrays. Bioinformatics 2007; 23: 1986–94. (10.1093/bioinformatics/btm283)
  25. Hennessy BT, Lu Y, Poradosu E, et al. Quantified pathway inhibition as a pharmacodynamic marker facilitating optimal targeted therapy dosing: Proof of principle with the AKT inhibitor perifosine. Clin Cancer Res 2007; 13: 7421–31. (10.1158/1078-0432.CCR-07-0760)
  26. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007; 23: 657–63. (10.1093/bioinformatics/btl646)
  27. Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 2005; 65: 2554–9. (10.1158/0008-5472-CAN-04-3913)
  28. Stassi G, Garofalo M, Zerilli M, et al. PED mediates AKT-dependent chemoresistance in human breast cancer cells. Cancer Res 2005; 65: 6668–75. (10.1158/0008-5472.CAN-04-4009)
  29. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, Mills GB. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin Cancer Res 2004; 10: 7031–42. (10.1158/1078-0432.CCR-04-0361)
  30. Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 2002; 22: 3205–12. (10.1038/sj.onc.1206394)
  31. Le Pabic H, L’Helgoualc’h A, Coutant A, et al. Involvement of the serine/threonine p70S6 kinase in TGF-β1-induced ADAM12 expression in cultured human hepatic stellate cells. J Hepatol 2005; 43: 1038–44. (10.1016/j.jhep.2005.05.025)
  32. Grove JR, Price DJ, Banerjee P, Balasubramanyam A, Ahmad MF, Avruch J. Regulation of an epitope-tagged recombinant Rsk-1 S6 kinase by phorbol ester and ERK/MAP kinase. Biochemistry 1993; 32: 7727–38. (10.1021/bi00081a018)
  33. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene 2007; 26: 1932–40. (10.1038/sj.onc.1209990)
  34. Lee SR, Park JH, Park EK, Chung CH, Kang SS, Bang OS. Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol 2005; 205: 270–7. (10.1002/jcp.20395)
  35. Reichert M, Saur D, Hamacher R, Schmid RM, Schneider G. Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res 2007; 67: 4149–56. (10.1158/0008-5472.CAN-06-4484)
  36. Huang J, Tan PH, Li KB, Matsumoto K, Tsujimoto M, Bay BH. Y-box binding protein, YB-1, as a marker of tumor aggressiveness and response to adjuvant chemotherapy in breast cancer. Int J Oncol 2005; 26: 607–13. (10.3892/ijo.26.3.607)
  37. Perreard L, Fan C, Quackenbush JF, et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res 2006; 8: R23. (10.1186/bcr1399)
  38. Liu Y, Hayes DN, Nobel A, Marron JS. Statistical significance of clustering for high dimension low sample size data. J Am Stat Assoc 2008; 103: 1281–93. (10.1198/016214508000000454)
  39. Oh DS, Troester MA, Usary J, et al. Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers. J Clin Oncol 2006; 24: 1656–64. (10.1200/JCO.2005.03.2755)
  40. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98: 5116–21. (10.1073/pnas.091062498)
  41. Dennis G, Jr., Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3. (10.1186/gb-2003-4-5-p3)
  42. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8: 11–23. (10.1038/nrc2291)
  43. Sun H, Ma Z, Li Y, et al. γ-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J Med Genet 2005; 42: 706–10. (10.1136/jmg.2004.028274)
  44. Moyano JV, Evans JR, Chen F, et al. αB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 2006; 116: 261–70. (10.1172/JCI25888)
  45. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–39. (10.1016/j.cell.2004.06.006)
  46. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356: 217–26. (10.1056/NEJMoa063994)
  47. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–72. (10.1016/j.cell.2007.11.019)
  48. Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11: 259–73. (10.1016/j.ccr.2007.01.013)
  49. Lien HC, Hsiao YH, Lin YS, et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene 2007; 26: 7859–71. (10.1038/sj.onc.1210593)
  50. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–9. (10.1093/jnci/djn123)
  51. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–15. (10.1016/j.cell.2008.03.027)
  52. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004. (10.1038/nrd1902)
  53. Hayes MJ, Thomas D, Emmons A, Giordano TJ, Kleer CG. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res 2008; 14: 4038–44. (10.1158/1078-0432.CCR-07-4379)
Dates
Type When
Created 16 years, 3 months ago (May 12, 2009, 10:43 p.m.)
Deposited 3 years, 2 months ago (June 17, 2022, 5 a.m.)
Indexed 1 hour, 43 minutes ago (Sept. 3, 2025, 6 a.m.)
Issued 16 years, 3 months ago (May 15, 2009)
Published 16 years, 3 months ago (May 15, 2009)
Published Online 16 years, 3 months ago (May 15, 2009)
Published Print 16 years, 3 months ago (May 15, 2009)
Funders 0

None

@article{Hennessy_2009, title={Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics}, volume={69}, ISSN={1538-7445}, url={http://dx.doi.org/10.1158/0008-5472.can-08-3441}, DOI={10.1158/0008-5472.can-08-3441}, number={10}, journal={Cancer Research}, publisher={American Association for Cancer Research (AACR)}, author={Hennessy, Bryan T. and Gonzalez-Angulo, Ana-Maria and Stemke-Hale, Katherine and Gilcrease, Michael Z. and Krishnamurthy, Savitri and Lee, Ju-Seog and Fridlyand, Jane and Sahin, Aysegul and Agarwal, Roshan and Joy, Corwin and Liu, Wenbin and Stivers, David and Baggerly, Keith and Carey, Mark and Lluch, Ana and Monteagudo, Carlos and He, Xiaping and Weigman, Victor and Fan, Cheng and Palazzo, Juan and Hortobagyi, Gabriel N. and Nolden, Laura K. and Wang, Nicholas J. and Valero, Vicente and Gray, Joe W. and Perou, Charles M. and Mills, Gordon B.}, year={2009}, month=may, pages={4116–4124} }