Abstract
Abstract MicroRNAs play important roles in animal development, cell differentiation, and metabolism and have been implicated in human cancer. The let-7 microRNA controls the timing of cell cycle exit and terminal differentiation in Caenorhabditis elegans and is poorly expressed or deleted in human lung tumors. Here, we show that let-7 is highly expressed in normal lung tissue, and that inhibiting let-7 function leads to increased cell division in A549 lung cancer cells. Overexpression of let-7 in cancer cell lines alters cell cycle progression and reduces cell division, providing evidence that let-7 functions as a tumor suppressor in lung cells. let-7 was previously shown to regulate the expression of the RAS lung cancer oncogenes, and our work now shows that multiple genes involved in cell cycle and cell division functions are also directly or indirectly repressed by let-7. This work reveals the let-7 microRNA to be a master regulator of cell proliferation pathways. [Cancer Res 2007;67(16):7713–22]
Bibliography
Johnson, C. D., Esquela-Kerscher, A., Stefani, G., Byrom, M., Kelnar, K., Ovcharenko, D., Wilson, M., Wang, X., Shelton, J., Shingara, J., Chin, L., Brown, D., & Slack, F. J. (2007). The let-7 MicroRNA Represses Cell Proliferation Pathways in Human Cells. Cancer Research, 67(16), 7713â7722.
Authors
13
- Charles D. Johnson (first)
- Aurora Esquela-Kerscher (additional)
- Giovanni Stefani (additional)
- Mike Byrom (additional)
- Kevin Kelnar (additional)
- Dmitriy Ovcharenko (additional)
- Mike Wilson (additional)
- Xiaowei Wang (additional)
- Jeffrey Shelton (additional)
- Jaclyn Shingara (additional)
- Lena Chin (additional)
- David Brown (additional)
- Frank J. Slack (additional)
References
48
Referenced
1,033
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–97.
(
10.1016/S0092-8674(04)00045-5
) -
Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 2005; 310: 1954–7.
(
10.1126/science.1115596
) -
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101: 2999–3004.
(
10.1073/pnas.0307323101
) -
Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64: 3753–6.
(
10.1158/0008-5472.CAN-04-0637
) -
Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–47.
(
10.1016/j.cell.2005.01.014
) -
He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–33.
(
10.1038/nature03552
) -
Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005; 102: 13944–9.
(
10.1073/pnas.0506654102
) -
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–70.
(
10.1158/0008-5472.CAN-05-1783
) -
Esquela-Kerscher A, Slack FJ. Oncomirs: microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–69.
(
10.1038/nrc1840
) -
Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005; 309: 1573–6.
(
10.1126/science.1115079
) -
Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–63.
(
10.1016/j.cell.2005.07.031
) -
Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–73.
(
10.1038/nature03315
) -
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12: 735–9.
(
10.1016/S0960-9822(02)00809-6
) -
Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86–9.
(
10.1038/35040556
) -
Reinhart B, Slack F, Basson M, et al. The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 2000; 403: 901–6.
(
10.1038/35002607
) -
Grosshans H, Johnson T, Reinert KL, Gerstein M, Slack FJ. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev Cell 2005; 8: 321–30.
(
10.1016/j.devcel.2004.12.019
) -
Lin SY, Johnson SM, Abraham M, et al. The C. elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 2003; 4: 639–50.
(
10.1016/S1534-5807(03)00124-2
) -
Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the lin-29 transcription factor. Mol Cell 2000; 5: 659–69.
(
10.1016/S1097-2765(00)80245-2
) -
Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell 2002; 1: 49–52.
(
10.1016/S1535-6108(02)00027-2
) -
Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–98.
(
10.1016/j.ccr.2006.01.025
) -
Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003; 3: 459–65.
(
10.1038/nrc1097
) -
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: 1–8.
(
10.1093/nar/gng015
) -
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Method 1995; 57: 289–300.
(
10.1111/j.2517-6161.1995.tb02031.x
) -
Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1945; 1: 80–3.
(
10.2307/3001968
) -
Wilkinson DG, Nieto MA. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 1993; 225: 361–73.
(
10.1016/0076-6879(93)25025-W
) -
Heller S, Sheane CA, Javed Z, Hudspeth AJ. Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc Natl Acad Sci U S A 1998; 95: 11400–5.
(
10.1073/pnas.95.19.11400
) -
Weil D, Garcon L, Harper M, Dumenil D, Dautry F, Kress M. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells. Biotechniques 2002; 33: 1244–8.
(
10.2144/02336st01
) -
Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29: 903–6.
(
10.1248/bpb.29.903
) -
Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 2004; 18: 132–7.
(
10.1101/gad.1165404
) -
Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315: 1576–9.
(
10.1126/science.1137999
) - Ito Y, Yoshida H, Uruno T, et al. Decreased expression of cyclin G2 is significantly linked to the malignant transformation of papillary carcinoma of the thyroid. Anticancer Res 2003; 23: 2335–8.
-
Brueckner B, Stresemann C, Kuner R, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 2007; 67: 1419–23.
(
10.1158/0008-5472.CAN-06-4074
) -
Wang T, Zhang X, Obijuru L, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer 2007; 46: 336–47.
(
10.1002/gcc.20415
) -
Vella MC, Reinert K, Slack FJ. Architecture of a validated microRNA:target interaction. Chem Biol 2004; 11: 1619–23.
(
10.1016/j.chembiol.2004.09.010
) -
Lall S, Grun D, Krek A, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 2006; 16: 460–71.
(
10.1016/j.cub.2006.01.050
) -
Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 1998; 395: 237–43.
(
10.1038/26155
) -
Galaktionov K, Lee AK, Eckstein J, et al. CDC25 phosphatases as potential human oncogenes. Science 1995; 269: 1575–7.
(
10.1126/science.7667636
) -
Osthus RC, Karim B, Prescott JE, et al. The Myc target gene JPO1/CDCA7 is frequently overexpressed in human tumors and has limited transforming activity in vivo. Cancer Res 2005; 65: 5620–7.
(
10.1158/0008-5472.CAN-05-0536
) -
Grossel MJ, Hinds PW. From cell cycle to differentiation: an expanding role for cdk6. Cell Cycle 2006; 5: 266–70.
(
10.4161/cc.5.3.2385
) -
Schulman BR, Esquela-Kerscher A, Slack FJ. Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn 2005; 234: 1046–54.
(
10.1002/dvdy.20599
) -
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
(
10.1016/S0092-8674(00)81683-9
) -
Chu CY, Rana TM. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 2006; 4: 1122–36.
(
10.1371/journal.pbio.0040210
) -
Ambros V, Horvitz HR. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 1984; 226: 409–16.
(
10.1126/science.6494891
) -
Banerjee D, Slack F. Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays 2002; 24: 119–29.
(
10.1002/bies.10046
) -
Grishok A, Pasquinelli AE, Conte D, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106: 23–34.
(
10.1016/S0092-8674(01)00431-7
) -
Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 2002; 16: 2733–42.
(
10.1101/gad.1026102
) -
Guo Y, Chen Y, Ito H, et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 2006; 384: 51–61.
(
10.1016/j.gene.2006.07.011
) -
Hodges PE, Carrico PM, Hogan JD, et al. Annotating the human proteome: the Human Proteome Survey Database (HumanPSD) and an in-depth target database for G protein-coupled receptors (GPCR-PD) from Incyte Genomics. Nucleic Acids Res 2002; 30: 137–41.
(
10.1093/nar/30.1.137
)
Dates
Type | When |
---|---|
Created | 18 years ago (Aug. 15, 2007, 3:18 p.m.) |
Deposited | 3 years, 2 months ago (June 16, 2022, 11:52 p.m.) |
Indexed | 1 day, 22 hours ago (Sept. 4, 2025, 9:49 a.m.) |
Issued | 18 years ago (Aug. 15, 2007) |
Published | 18 years ago (Aug. 15, 2007) |
Published Online | 18 years ago (Aug. 15, 2007) |
Published Print | 18 years ago (Aug. 15, 2007) |
@article{Johnson_2007, title={The let-7 MicroRNA Represses Cell Proliferation Pathways in Human Cells}, volume={67}, ISSN={1538-7445}, url={http://dx.doi.org/10.1158/0008-5472.can-07-1083}, DOI={10.1158/0008-5472.can-07-1083}, number={16}, journal={Cancer Research}, publisher={American Association for Cancer Research (AACR)}, author={Johnson, Charles D. and Esquela-Kerscher, Aurora and Stefani, Giovanni and Byrom, Mike and Kelnar, Kevin and Ovcharenko, Dmitriy and Wilson, Mike and Wang, Xiaowei and Shelton, Jeffrey and Shingara, Jaclyn and Chin, Lena and Brown, David and Slack, Frank J.}, year={2007}, month=aug, pages={7713–7722} }