10.1152/physrev.00029.2002
Crossref journal-article
American Physiological Society
Physiological Reviews (24)
Abstract

Goll, Darrel E., Valery F. Thompson, Hongqi Li, Wei Wei, and Jinyang Cong. The Calpain System. Physiol Rev 83: 731–801, 2003; 10.1152/physrev.00029.2002.—The calpain system originally comprised three molecules: two Ca2+-dependent proteases, μ-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both μ- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55–65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six “domains” in the 80-kDa subunit: 1) a 19-amino acid NH2-terminal sequence; 2) and 3) two domains that constitute the active site, IIa and IIb; 4) domain III; 5) an 18-amino acid extended sequence linking domain III to domain IV; and 6) domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of μ- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.

Bibliography

GOLL, D. E., THOMPSON, V. F., LI, H., WEI, W., & CONG, J. (2003). The Calpain System. Physiological Reviews, 83(3), 731–801.

Authors 5
  1. DARREL E. GOLL (first)
  2. VALERY F. THOMPSON (additional)
  3. HONGQI LI (additional)
  4. WEI WEI (additional)
  5. JINYANG CONG (additional)
References 504 Referenced 2,323
  1. AdachiY, Ishida-TakahashiA, TakahashiC, TakanoE, MurachiT,andHatanakaM. Phosphorylation and subcellular distribution of calpastatin in human hematopoietic system cells.J Biol Chem266: 3968–3972, 1991. (10.1016/S0021-9258(19)67888-9)
  2. AdachiY, KobayashiN, MurachiT,andHatanakaM. Ca2+-dependent cysteine proteinase, calpains I and II are not phosphorylated in vivo.Biochem Biophys Res Commun13: 1090–1096, 1986. (10.1016/0006-291X(86)90445-6)
  3. 10.1126/science.287.5461.2185
  4. 10.1042/bj2890093
  5. 10.1111/j.1432-1033.1996.00948.x
  6. 10.1016/S0002-9440(10)65661-1
  7. AndresenK, TomTDT,andStrandM. Characterization of cDNA clones encoding a novel calcium-activated neutral proteinase fromSchistosoma mansoni.J Biol Chem266: 15085–15090, 1991. (10.1016/S0021-9258(18)98590-X)
  8. 10.1016/0014-5793(86)80919-X
  9. 10.1016/0167-4838(95)00243-X
  10. 10.1128/MCB.20.12.4474-4481.2000
  11. 10.1016/0014-5793(95)00691-2
  12. 10.3109/14756368909030363
  13. 10.1016/S0014-5793(99)00461-5
  14. 10.1128/MCB.21.6.2213-2220.2001
  15. 10.1002/(SICI)1097-4598(200001)23:1<106::AID-MUS14>3.0.CO;2-D
  16. 10.1038/10579
  17. 10.1172/JCI10665
  18. BakiA, TompaP, MolnárO,andFriedrichP. Autolysis parallels activation of μ-calpain.Biochem J318: 897–901, 1995. (10.1042/bj3180897)
  19. BalcerzakD, PoussardS, BrustisJJ, FlamraniN, SorianoM, CottinP,andDucastaingA. An antisense oligodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion.J Cell Sci108: 2077–2082, 1995. (10.1242/jcs.108.5.2077)
  20. 10.1002/jnr.490290310
  21. 10.1016/S0006-8993(96)01488-6
  22. 10.1016/S0006-8993(96)01302-9
  23. 10.1016/0300-9084(92)90125-X
  24. 10.1002/j.1460-2075.1996.tb00825.x
  25. 10.1002/(SICI)1097-4644(19990915)74:4<522::AID-JCB2>3.0.CO;2-I
  26. BarrettAJ, RawlingsND,andWoessnerJF.Handbook of Proteolytic Enzymes. London: Academic, 1998.
  27. 10.1016/0024-3205(91)90126-V
  28. 10.1006/exnr.1998.7001
  29. 10.1126/science.7015504
  30. 10.1126/science.2704996
  31. 10.1016/0092-8674(87)90126-7
  32. 10.1016/S0006-3495(93)81211-6
  33. 10.1006/abbi.1996.9758
  34. 10.1016/0305-0491(93)90343-4
  35. 10.1083/jcb.151.3.685
  36. BilakSR, SernettSW, BilakMM, BellinRM, StromerMH, HuiattTW,andRobsonRM. Properties of the novel intermediate filamant protein, synemin, and its identification in mammalian muscle.Arch Biochem Biophys355: 3–76, 1998. (10.1006/abbi.1998.0702)
  37. 10.1016/0143-4160(88)90036-X
  38. BishopMD, KappesSM, KeeleJW, StoneRT, SundenSL, HawkinsGA, ToldoSS, FriesR, GroszMD,andYooJ. A genetic linkage map for cattle.Genetics136: 619–639, 1994. (10.1093/genetics/136.2.619)
  39. 10.1038/nsb0797-532
  40. 10.1126/science.277.5331.1453
  41. 10.1074/jbc.274.20.14046
  42. 10.1074/jbc.M007807200
  43. 10.1126/science.1065874
  44. BourgeauG, LapointeH, PéloquinP,andMayrandD. Cloning, expression, and sequencing of a protease gene (tpr)fromPorphyromonas gingivalis, W83, inEscherichia coli.Infect Immun60: 3186–3192, 1992. (10.1128/IAI.60.8.3186-3192.1992)
  45. BrownNandCrawfordC. Structural modifications associated with the change in Ca2+sensitivity on activation of m-calpain.FEBS Lett323: 65–68, 1993. (10.1016/0014-5793(93)81112-D)
  46. 10.1074/jbc.M105153200
  47. 10.1152/ajprenal.2000.278.5.F847
  48. 10.1126/science.282.5396.2012
  49. 10.1074/jbc.M008972200
  50. 10.1083/jcb.147.3.619
  51. 10.1128/MCB.22.1.257-269.2002
  52. 10.1002/(SICI)1097-4598(199907)22:7<905::AID-MUS14>3.0.CO;2-W
  53. ChenMandStracherA. In situ phosphorylation of platelet actin-binding protein by cAMP-dependent kinase stabilizes it against proteolysis by calpain.J Biol Chem264: 14282–14289, 1989. (10.1016/S0021-9258(18)71675-X)
  54. 10.1016/S0014-5793(99)01281-8
  55. 10.1074/jbc.272.45.28479
  56. 10.1074/jbc.275.7.5131
  57. 10.1042/bj2350279
  58. 10.1038/387459a0
  59. 10.1016/0014-5793(96)00910-6
  60. CongJ, ThompsonVF,andGollDE. Phosphorylation of the Calpains (Abstract).Mol Biol Cell11: 386a, 2000.
  61. 10.1016/S1046-5928(02)00010-4
  62. CongJY, GollDE, PetersonAM,andKapprellHP. The role of autolysis in activity of the Ca2+-dependent proteinases (μ-calpain and m-calpain).J Biol Chem264: 10096–10103, 1989. (10.1016/S0021-9258(18)81771-9)
  63. CongJY, ThompsonVF,andGollDE. Effect of monoclonal antibodies specific for the 28-kDa subunit on catalytic properties of the calpains.J Biol Chem268: 25740–25747, 1993. (10.1016/S0021-9258(19)74452-4)
  64. 10.1016/S0167-4781(98)00203-6
  65. 10.1074/jbc.273.1.660
  66. CoolicanSAandHathawayDR. Effect ofl-α-phosphatidylinositol on a vascular smooth muscle Ca2+-dependent protease.J Biol Chem259: 11627–11630, 1984. (10.1016/S0021-9258(20)71248-2)
  67. 10.1042/bj3180041
  68. 10.1016/0167-4838(91)90118-J
  69. CottinP, ThompsonVF, SatheSK, SzpacenkoA,andGollDE. Autolysis of μ- and m-calpain from bovine skeletal muscle.Biol Chem382: 767–776, 2001. (10.1515/BC.2001.092)
  70. 10.1016/0014-5793(81)80622-9
  71. 10.1016/0169-328X(91)90015-P
  72. CrawfordC. Protein and peptide inhibitors of calpains. In:Intra-cellular Calcium-Dependent Proteolysis. Boca Raton, FL: CRC, 1990, p. 75–89.
  73. 10.1042/bj2960135
  74. 10.1385/1-59259-050-0:33
  75. 10.1016/S0167-4838(96)00138-0
  76. 10.1152/physrev.1991.71.3.813
  77. 10.1021/bi00249a008
  78. 10.1016/0167-4838(92)90335-B
  79. 10.1074/jbc.274.51.36321
  80. DaviesPJA, WallachD, WillinghamMC,andPastanI. Filamin-actin interaction. Dissociation of binding from gelation by Ca2+-activated proteolysis.J Biol Chem253: 4036–4042, 1978. (10.1016/S0021-9258(17)34795-6)
  81. 10.1016/0167-4838(82)90457-5
  82. DaytonWR, GollDE, StromerMH, RevilleWJ, ZeeceMG,andRobsonRM. Some properties of a Ca2+-activated protease that may be involved in myofibrillar protein turnover. In:Cold Spring Harbor Conferences on Cell Proliferation. Proteases and Biological Control, edited by Reich E, Rifkin DB, and Shaw E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1975, vol.2, p. 551–577.
  83. 10.1021/bi00655a019
  84. 10.1021/bi00655a020
  85. 10.1016/S0925-4773(99)00214-2
  86. 10.1016/S0378-1119(01)00599-6
  87. 10.1006/geno.1997.4870
  88. 10.1006/geno.2000.6289
  89. DearTN, MöllerA,andBoehmT. CAPN11: a calpain with high mRNA levels in testis and located on chromosome 6.Genomics59: 243–247, 2000.
  90. 10.1073/pnas.88.16.7214
  91. 10.1016/0167-4781(93)90040-K
  92. 10.1021/bi00261a019
  93. 10.1016/0003-9861(84)90592-7
  94. 10.1016/S0014-5793(97)01588-3
  95. 10.1042/bj3080057
  96. 10.1074/jbc.M108893200
  97. 10.1016/S0014-5793(98)01167-3
  98. 10.1042/bj3480037
  99. 10.1042/bj20020485
  100. 10.1007/s004410051315
  101. 10.1016/0167-4838(91)90059-9
  102. EdsallJTandWymanJ.Biophysical Chemistry.New York: Academic, 1958, vol.1. (10.1016/B978-1-4832-2946-1.50005-1)
  103. 10.1039/fs9821700109
  104. ElceJS. Expression of calpain in bacteria and insect cells. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease,edited by Wang KKW and Yuen P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 51–62.
  105. ElceJS.Methods in Molecular Biology: Calpain Methods and Protocols. Totowa, NJ: Humana, 2000.
  106. 10.1042/bj3260031
  107. 10.1074/jbc.272.17.11268
  108. 10.1073/pnas.84.11.3590
  109. EmoriY, KawasakiH, ImajohS, KawashimaS,andSuzukiK. Isolation and sequence analysis of cDNA clones for the SC subunit of rabbit calcium-dependent protease.J Biol Chem261: 9472–9476, 1986. (10.1016/S0021-9258(18)67680-X)
  110. EmoriY, KawasakiH, ImajohS, MinamiY,andSuzukiK. All four repeating domains of the endogenous inhibitor for calcium-dependent protease independently retain inhibitory activity.J Biol Chem263: 2364–2370, 1988. (10.1016/S0021-9258(18)69215-4)
  111. EmoriY, KawasakiH, SugiharaH, ImajohS, KawashimaS,andSuzukiK. Isolation and sequence analyses of cDNA clones for the large subunits of two isozymes of rabbit calcium-dependent protease.J Biol Chem261: 9465–9471, 1986. (10.1016/S0021-9258(18)67679-3)
  112. 10.1016/0014-5793(86)80094-1
  113. EmoriYandSaigoK. Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development ofDrosophila.J Biol Chem269: 25137–25142, 1994. (10.1016/S0021-9258(17)31508-9)
  114. 10.1111/j.1365-2052.1998.00319.x
  115. Figueiredo-PereiraME, EfthimiopoulosS, TezapsidisN, BukuA, GhispoJ, MehtaP,andRobakisNK. Distinct secretases, a cysteine protease and a serine protease, generate the C termini of amyloid β-proteins Aβ1–40and Aβ1–42, respectively.J Neurochem72: 1417–1422, 1999. (10.1046/j.1471-4159.1999.721417.x)
  116. 10.1515/bchm3.1986.367.2.1147
  117. FoxJEB, GollDE, ReynoldsCC,andPhillipsDR. Identification of two proteins (actin-binding protein and P235) that are hydrolyzed by endogenous Ca2+-dependent protease during platelet aggregation.J Biol Chem260: 1060–1066, 1985. (10.1016/S0021-9258(20)71208-1)
  118. FoxJEB, ReynoldsCC, MorrowJS,andPhillipsDR. Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation.Blood69: 537–545, 1987. (10.1182/blood.V69.2.537.bloodjournal692537)
  119. FoxJEBandSaidoTC. Calpain in signal transduction. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, edited by Wang KKW and Yuen P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 103–126.
  120. 10.1083/jcb.120.6.1501
  121. 10.1002/j.1460-2075.1993.tb06174.x
  122. 10.1007/s003359900995
  123. 10.1016/S0167-4781(00)00256-6
  124. 10.2527/1999.77102685x
  125. 10.2527/2000.7892336x
  126. 10.1006/abbi.1998.0747
  127. Gil-ParradoS, PoppO, KnochTA, ZahlerTA, BestvaterF, FelgentrÄgerM, HolloschiA, Fernández-MontalavanA, AuerswaldE, FritzH, Fluentes-PriorP, MachleidtW,andSpiessE. Subcellular localization and in vivo subunit interactions of ubiquitous μ-calpain.J Biol Chem278: 2003. (10.1074/jbc.M208657200)
  128. 10.1074/jbc.275.4.2390
  129. 10.1016/S0962-8924(01)02179-1
  130. GladingA, ReynoldsIJ,andWellsA. EGF receptor activates calpain activity via ERK phosphorylation, not increased calcium flux (Abstract).Mol Biol Cell11: 181a, 2000.
  131. 10.1074/jbc.M008847200
  132. 10.1126/science.274.5287.546
  133. GollDE, DaytonWR, SinghI,andRobsonRM. Studies of the α-actinin/actin interaction in the Z-disk by using calpain.J Biol Chem266: 8501–8510, 1991. (10.1016/S0021-9258(18)93003-6)
  134. GollDE, KleeseWC, KumamotoT, CongJ-Y,andSzpacenkoA. In search of the regulation and function of the Ca2+-dependent proteinases (calpains). In:Intracellular Proteolysis, Mechanisms and Regulation, edited by Katumuna N and Kominami E. Tokyo: Jpn Sci Soc Press, 1989, p. 82–91.
  135. GollDE, KleeseWC, OkitaniA, KumamotoT, CongJ,andKapprellH-P. Historical background and current status of the Ca2+-dependent proteinase system. In:Intracellular Calcium-Dependent Proteolysis, edited by Mellgren RL and Murachi T. Boca Raton, FL: CRC, 1990, p. 3–24.
  136. GollDE, KleeseWC, SloanDA, ShannonJD,andEdmundsT. Properties of the Ca2+-dependent proteinases and their protein inhibitor.Cienc Biol11: 75–83, 1986.
  137. GollDE, ThompsonVF, TaylorRG, EdmundsT,andCongJ. Properties and biological regulation of the calpain system. In:Expression of Tissue Proteinases and Regulation of Protein Degradation, edited by Ouali A, Demeyer DI, and Smulders F. Utrecht, The Netherlands: EC\CE/AMST, 1995, p. 47–68.
  138. GollDE, ThompsonVF, TaylorRG, OualiA,andChouR-GR. The calpain system in muscle tissue. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, edited by Wang KKW and Yuen P-W. Philadelphia, PA, Taylor & Francis, 1999, p. 127–160.
  139. 10.1002/bies.950140810
  140. 10.1073/pnas.251541198
  141. 10.1016/S0014-5793(97)00225-1
  142. Graham-SiegenthalerK, GauthierS, DaviesPL,andElceJS. Active recombinant rat calpain II. Bacterially produced large and SC subunits associate both in vivo and in vitro.J Biol Chem269: 30457–30460, 1994. (10.1016/S0021-9258(18)43835-5)
  143. 10.1111/j.1471-4159.1993.tb03555.x
  144. 10.1111/j.1432-1033.1994.tb19013.x
  145. 10.1016/S0006-8993(97)00384-3
  146. 10.1046/j.1471-4159.2001.00493.x
  147. 10.1074/jbc.272.3.2005
  148. GuttmannRPandJohnsonGVW. Calpain-mediated proteolysis of neuronal structural proteins. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, edited by Wang KKW and Yuen P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 229–249.
  149. HajimohammadrezaI, RaserKJ, NathR, NadimpalliR, ScottM,andWangKKW. Neuronal nitric oxide synthase and calmodulin-dependent protein kinase II(alpha) undergo neurotoxin-induced proteolysis.J Neurochem69: 1006–1013, 1997. (10.1046/j.1471-4159.1997.69031006.x)
  150. 10.1046/j.1471-4159.1997.69010371.x
  151. 10.1016/S0006-3495(93)81112-3
  152. HarrisAS, CroallDE,andMorrowJS. The calmodulin-binding site in α-fodrin is near the calcium-dependent protease-I cleavage site.J Biol Chem263: 15754–15761, 1988. (10.1016/S0021-9258(19)37652-5)
  153. 10.1097/00075197-199903000-00011
  154. 10.1006/bbrc.2001.5849
  155. HataA, OhnoS, AkitaY,andSuzukiK. Tandemly reiterated negative enhancer-like elements regulate transcription of a human gene for the large subunit of calcium-dependent protease.J Biol Chem264: 6404–6411, 1989. (10.1016/S0021-9258(18)83364-6)
  156. 10.1016/0014-5793(92)80628-T
  157. 10.1007/s002390010209
  158. 10.1016/S0014-5793(01)02611-4
  159. 10.1021/bi00309a023
  160. 10.1093/oxfordjournals.jbchem.a135189
  161. 10.1016/0006-291X(92)91822-8
  162. HemmingsL, ReesDJG, OhanianV, BoltonSJ, GilmoreAP, PatelB, PriddleH, TrevithickJE, HynesRO,andCritchleyDR. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site.J Cell Sci109: 2715–2726, 1996. (10.1242/jcs.109.11.2715)
  163. 10.1128/MCB.19.6.4047
  164. 10.1146/annurev.biochem.67.1.425
  165. 10.1016/S0166-6851(01)00296-1
  166. 10.1016/0014-5793(91)80015-U
  167. 10.1006/bbrc.1998.8686
  168. 10.1016/0300-9084(94)90110-4
  169. HopfFW, TurnerPR, DenetclawWF Jr, ReddyP,andSteinhardtRA. A critical evaluation of resting intracellular free calcium regulation in dystrophicmdxmuscle.Am J Physiol Cell Physiol271: C1325–C1339, 1996. (10.1152/ajpcell.1996.271.4.C1325)
  170. 10.1038/79876
  171. 10.1093/emboj/18.24.6880
  172. 10.1074/jbc.M007352200
  173. 10.1016/S1471-4914(01)02049-4
  174. 10.1016/0014-5793(94)80470-2
  175. 10.1074/jbc.272.52.32719
  176. 10.1006/jmcc.1993.1122
  177. 10.1021/bi00421a022
  178. 10.1016/0006-291X(87)90575-4
  179. 10.2220/biomedres.5.481
  180. 10.1093/oxfordjournals.jbchem.a135593
  181. 10.1093/oxfordjournals.jbchem.a121930
  182. 10.1016/0014-5793(85)81211-4
  183. 10.1159/000132982
  184. InomataM, HayashiM, NakamuraM, SaitoY,andKawashimaS. Properties of erythrocyte membrane binding and autolytic activation of calcium-activated neutral protease.J Biol Chem264: 18838–18843, 1989. (10.1016/S0021-9258(18)51543-X)
  185. 10.1016/0167-4889(93)90011-D
  186. 10.1016/0006-291X(90)91192-U
  187. 10.1038/35057062
  188. 10.1016/0167-4781(91)90139-D
  189. 10.1093/oxfordjournals.jbchem.a132111
  190. IshiuraS, NonakaI,andSugitaH. Calcium-activated neutral protease: its degradative role in muscle cells. In:Proceedings of International Symposium on Muscular Dystrophy, edited by Ebashi S. Tokyo: Univ. of Tokyo Press, 1980, p. 265–282.
  191. 10.1016/0006-291X(87)91582-8
  192. 10.1016/S0006-3495(97)78124-4
  193. 10.1074/jbc.274.34.23893
  194. 10.1016/S0305-0491(97)00177-6
  195. 10.1016/S0006-3495(01)76229-7
  196. 10.1002/bies.950191111
  197. 10.1006/abbi.1998.0858
  198. 10.1002/jnr.490130306
  199. KapprellH-PandGollDE. Effect of Ca2+on binding of the calpains to calpastatin.J Biol Chem264: 17888–17896, 1989. (10.1016/S0021-9258(19)84656-2)
  200. 10.1016/0166-6851(91)90078-K
  201. 10.1093/oxfordjournals.jbchem.a122844
  202. 10.1006/abbi.1993.1448
  203. 10.1038/bjc.1972.33
  204. 10.1006/scdb.2000.0165
  205. 10.1146/annurev.bi.58.070189.000335
  206. 10.2527/1994.723606x
  207. 10.1042/bj3350589
  208. 10.1006/abbi.1997.0108
  209. KishimotoA, MikawaK, HashimotoK, YasukaI, TanakaS, TominagaM, KurodaT,andNishimuraY. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (Calpain).J Biol Chem264: 4088–4092, 1989. (10.1016/S0021-9258(19)84966-9)
  210. 10.1006/abbi.2001.2736
  211. 10.1074/jbc.273.46.30530
  212. 10.1016/S0167-4838(97)00092-7
  213. 10.2527/1990.683659x
  214. KositprapaC, ZhangB, BergerS, CantyJM Jr,andLeeT-C. Calpain-mediated proteolytic cleavage of troponin I induced by hypoxia or metabolic inhibition in cultured neonatal cardiomyocytes.Mol Cell Biochem241: 47–55, 2000. (10.1023/A:1007160702275)
  215. 10.1016/0003-9861(89)90368-8
  216. 10.1128/MCB.17.1.460
  217. 10.1016/0006-291X(92)91742-9
  218. 10.1016/0167-4889(87)90172-8
  219. 10.1093/oxfordjournals.jbchem.a123124
  220. 10.1074/jbc.M203457200
  221. 10.1074/jbc.274.30.21265
  222. 10.1002/ar.1092320108
  223. 10.1007/BF00307642
  224. KumarA, ShafigS, WadgaonkarR,andStracherA. Effect of protease inhibitors, leupeptin and E64d, on differentiation of C2C12myoblasts in tissue culture.Cell Mol Biol38: 477–483, 1992.
  225. 10.1016/0006-291X(89)91540-4
  226. 10.1016/0006-291X(90)92030-4
  227. KunimatsuM, MaXJ, OzakiY, NaritaM, MizokamiM,andSasakiM. Neutrophil chemotactic N-acetyl peptides from the calpain SC subunit are also chemotactic for immunocytes.Biochem Mol Biol Int35: 247–254, 1995.
  228. 10.1016/S0006-3495(93)81564-9
  229. 10.1074/jbc.M907757199
  230. 10.1016/0014-5793(93)81468-F
  231. 10.1016/0014-4827(92)90033-5
  232. 10.1016/S0022-2828(85)80100-0
  233. LaskowskiM Jr andSealockRW. Protein proteinase inhibitors-molecular aspects. In:The Enzymes(3rd ed.), edited by Boyer PD. New York: Academic, 1971, vol.III, p. 375–473.
  234. 10.1016/S0304-4165(02)00184-8
  235. LeeH-J, SorimachiH, JeongSY, IshiuraS,andSuzukiK. Molecular cloning and characterization of a novel tissue-specific calpain predominantly expressed in the digestive tract.Biol Chem379: 175–183, 1998. (10.1515/bchm.1998.379.2.175)
  236. 10.1006/abbi.1998.1021
  237. 10.1038/35012636
  238. 10.1016/0167-4781(92)90500-Y
  239. LeeWJ, MaH, TakanoE, YangHQ, HatanakaM,andMakiM. Molecular diversity in amino-terminal domains of human calpastatin by exon skipping.J Biol Chem267: 8437–8442, 1992. (10.1016/S0021-9258(18)42463-5)
  240. 10.1083/jcb.149.4.793
  241. 10.1016/0167-4838(85)90014-7
  242. 10.1073/pnas.202355799
  243. 10.1091/mbc.12.1.27
  244. LiH, ThompsonVF,andGollDE. Efficacy of different calpastatin constructs (Abstract).Mol Biol Cell11: 385a, 2000.
  245. LiH, ThompsonVF,andGollDE. Effects of autolysis on properties of μ- and m-calpain (Abstract).Mol Biol Cell13: 304A, 2000.
  246. 10.1073/pnas.042098799
  247. 10.1038/nsb0797-539
  248. LiterskyJMandJohnsonGV. Phosphorylation by cAMP-dependent protein kinase inhibits the degradation of tau by calpain.J Biol Chem267: 1563–1568, 1992. (10.1016/S0021-9258(18)45982-0)
  249. 10.1074/jbc.M005451200
  250. 10.1016/S0014-5793(98)01697-4
  251. 10.1016/S0167-4889(02)00193-3
  252. 10.1006/nlme.1998.3840
  253. MaH, FukiageC, AzumaM,andShearerTR. Cloning and expression of mRNA for calpain Lp82 from rat lens: splice variant of p94.Invest Ophthalmol Vis Sci39: 454–461, 1998.
  254. 10.1074/jbc.M100603200
  255. MaH, ShihM, HataI, FukiageC, AzumaM,andShearerTR. Protein for Lp82 calpain is expressed and enzymatically active in young rat lens.Exp Eye Res67: 211–229, 1998. (10.1006/exer.1998.0515)
  256. MaH, YangHQ, TakanoE, HatanakaM,andMakiM. Aminoterminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with the calmodulin-like domain of the proteinase.J Biol Chem269: 24430–24436, 1994. (10.1016/S0021-9258(19)51102-4)
  257. 10.1016/0024-3205(95)00280-J
  258. MakiM, BaǧciH, HamguchiK, UedaM, MurachiT,andHatanakaM. Inhibition of calpain by a synthetic oligopeptide corresponding to an exon of the human calpastatin gene.J Biol Chem264: 18866–18869, 1989. (10.1016/S0021-9258(19)47235-9)
  259. MakiM, HatanakaM, TakanoE,andMurachiT. Structure-function relationship of the calpastatins. In:Intracellular Calcium-Dependent Proteolysis, edited by Mellgren RL and Murachi T. Boca Raton, FL: CRC, 1990, p 37–51.
  260. MakiM, MaH, TakanoE, AdachiY, LeeWJ, HatanakaM,andMurachiT. Calpastatins: biochemical and molecular biological studies.Biomed Biochim Acta50: 509–516, 1991.
  261. MakiM, NarayanaS,andHitomiK. A growing family of the Ca2+-binding proteins with five EF-hand motifs.Biochem J328: 718–720, 1997. (10.1042/bj3280717v)
  262. 10.1016/0006-291X(87)90665-6
  263. 10.1016/0014-5793(87)80531-8
  264. MakiM, TakanoE, OsawaT, OoiT, MurachiT,andHatanakaM. Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs inEscherichia coli. J Biol Chem263: 10254–10261, 1988. (10.1016/S0021-9258(19)81507-7)
  265. 10.1002/(SICI)1098-2795(199709)48:1<119::AID-MRD14>3.0.CO;2-W
  266. 10.1016/S0006-3495(00)76809-3
  267. 10.1074/jbc.270.12.6425
  268. 10.1093/oxfordjournals.jbchem.a022213
  269. 10.1006/geno.1997.5133
  270. 10.1002/jez.1402650202
  271. 10.1016/0014-5793(91)81224-V
  272. McClellandP, LashJA,andHathawayDR. Identification of major autolytic cleavage sites in the regulatory subunit of vascular Calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA.J Biol Chem264: 17428–17431, 1989. (10.1016/S0021-9258(18)71512-3)
  273. 10.1016/0968-0004(91)90058-4
  274. 10.1096/fasebj.1.2.2886390
  275. 10.1016/0006-291X(88)90501-3
  276. 10.1006/bbrc.1997.7003
  277. 10.1016/0003-9861(83)90089-9
  278. 10.1016/0167-4838(88)90066-0
  279. 10.1016/0006-291X(87)91517-8
  280. 10.1016/0167-4889(87)90010-3
  281. 10.1016/0167-4838(89)90032-0
  282. 10.1074/jbc.271.26.15568
  283. 10.1016/0003-9861(86)90468-6
  284. MellgrenRLandMurachiT (Editors).Intracellular Calcium-Dependent Proteolysis. Boca Raton, FL: CRC, 1990.
  285. MellgrenRL, NetteyMS, MericleMT, RennoW,andLaneRD. An improved purification procedure for calpastatin, the protein inhibitor specific for the intracellular calcium-dependent proteinases, calpains.Prep Biochem18: 183–197, 1988. (10.1080/00327488808062520)
  286. 10.1006/excr.1994.1328
  287. 10.1074/jbc.275.1.82
  288. 10.1016/S0014-5793(98)00724-8
  289. 10.1074/jbc.273.21.12827
  290. 10.1006/bbrc.2000.2796
  291. 10.1016/0003-9861(84)90567-8
  292. 10.1042/bj3140511
  293. 10.1111/j.1432-1033.1991.tb16487.x
  294. 10.1093/oxfordjournals.jbchem.a122585
  295. 10.1093/oxfordjournals.jbchem.a121956
  296. 10.1093/nar/14.22.8805
  297. 10.1016/S0167-4838(00)00286-7
  298. 10.1016/S0092-8674(02)00659-1
  299. MolinariM, AnagliJ,andCarafoliE. Ca2+-activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form.J Biol Chem269: 27992–27995, 1994. (10.1016/S0021-9258(18)46885-8)
  300. 10.1074/jbc.270.5.2032
  301. 10.1074/jbc.270.24.14576
  302. 10.1007/BF01273257
  303. 10.1016/0968-0004(82)90157-8
  304. 10.1006/bbrc.1997.7571
  305. 10.1093/oxfordjournals.jbchem.a124803
  306. 10.3109/01677068909107104
  307. 10.1016/S0006-3223(97)00251-5
  308. MurachiT. Intracellular Ca2+protease and its inhibitor protein: calpain and calpastatin. In:Calcium and Cell Function,edited by Cheung WY. New York: Academic, 1983, vol.IV, p. 377–410.
  309. MurachiT. Intracellular regulatory system involving calpain and calpastatin.Biochem Int18: 263–294, 1989.
  310. MurachiT, HatanakaM,andHamakuboT. Calpains and neuropeptide metabolism. In:Neuropeptides and Their Peptidases, edited by Turner E. Chichester, UK: Ellis Horwood, 1987, p. 202–228.
  311. 10.1016/0012-1606(82)90184-1
  312. MyklesDLandSkinnerDM. Four Ca2+-dependent proteinase activities isolated from crustacean muscle differ in size, net charge, and sensitivity to Ca2+and inhibitors.J Biol Chem261: 9865–9871, 1986. (10.1016/S0021-9258(18)67596-9)
  313. 10.1093/oxfordjournals.jbchem.a003025
  314. 10.1083/jcb.150.4.887
  315. 10.1006/exer.1998.0686
  316. NakamuraY, FukiageC, ShihM, MaH, DavidLL, AzumaM,andShearerTR. Contribution of calpain Lp82-induced proteolysis to experimental cataractogenesis in mice.Invest Ophthalmol Vis Sci41: 1460–1466, 2000.
  317. 10.1002/mus.880140803
  318. 10.1128/MCB.3.6.1146
  319. 10.1006/exnr.2001.7708
  320. NishimuraTandGollDE. Binding of calpain fragments to calpastatin.J Biol Chem266: 11842–11850, 1991. (10.1016/S0021-9258(18)99034-4)
  321. NixonRAandMohanP. Calpains in the pathogenesis of Alzheimer's disease. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease,edited by Wang KKW and Yeun P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 267–291.
  322. 10.1074/jbc.272.17.10987
  323. OdaA, DrukerBJ, AriyoshiH, SmithM,andSalzmanEW. pp60src is an endogenous substrate for calpain in human blood platelets.J Biol Chem268: 12603–12608, 1993. (10.1016/S0021-9258(18)31431-5)
  324. 10.1038/312566a0
  325. OhnoS, EmoriY,andSuzukiS. Nucleotide sequence of a cDNA coding for the SC subunit of human calcium-dependent protease.Nucleic Acids Res14: 5559, 1986.
  326. OhnoS, MinoshimaS, KudohJ, FukuyamaR, ShimuzuY, Ohmi-ImajohS, ShimizuN,andSuzukiK. Four genes for the calpain family locate on four distinct human chromosomes.Cytogenet Cell Genet33: 225–229, 1990. (10.1159/000132937)
  327. 10.1016/0168-9452(89)90132-5
  328. 10.1016/S0300-9084(99)80135-7
  329. 10.1016/0168-9452(91)90253-5
  330. 10.1016/0168-9452(85)90167-0
  331. 10.1128/jb.170.3.1254-1260.1988
  332. OkitaniA, GollDE, StromerMH,andRobsonRM. Intracellular inhibitor of a Ca2+-activated protease involved in myofibrillar protein turnover.Federation Proc35: 1746, 1976.
  333. 10.1074/jbc.273.27.17073
  334. 10.1006/bbrc.1998.8085
  335. 10.1152/jappl.2000.88.3.1134
  336. 10.1016/0006-291X(79)91873-4
  337. OtsukaYandGollDE. Purification of the Ca2+-dependent proteinase inhibitor from bovine cardiac muscle and its interaction with the millimolar Ca2+-dependent proteinase.J Biol Chem262: 5839–5851, 1987. (10.1016/S0021-9258(18)45651-7)
  338. 10.1074/jbc.M105149200
  339. 10.1016/S0008-6363(99)00374-0
  340. 10.1128/MCB.17.5.2806
  341. 10.1042/bj3450129
  342. 10.1111/j.1432-1033.1992.tb17191.x
  343. 10.1006/abbi.1999.1601
  344. 10.1006/abbi.2001.2546
  345. 10.1073/pnas.96.4.1279
  346. 10.1006/geno.1997.4995
  347. 10.1083/jcb.99.6.2297
  348. 10.1016/S1357-2725(02)00009-2
  349. 10.1016/S0014-5793(99)01250-8
  350. 10.1046/j.1471-4159.2001.00510.x
  351. 10.1042/bj2530467
  352. 10.1021/bi00150a012
  353. 10.1073/pnas.85.6.1740
  354. 10.1016/S0006-291X(87)80258-9
  355. 10.1073/pnas.81.1.53
  356. 10.1016/0006-291X(90)91775-N
  357. 10.1016/0006-291X(90)91184-T
  358. 10.1016/S0306-4522(96)00483-6
  359. 10.1083/jcb.141.3.647
  360. PoussardS, DuvertM, BalcerzakD, RamassamyS, BrustisJJ, CottinP,andDucastaingA. Evidence for implication of muscle-specific calpain (p94) in myofibrillar integrity.Cell Growth Differ7: 1416–1469, 1996.
  361. 10.1006/bbrc.1994.1342
  362. 10.1074/jbc.M102794200
  363. 10.1074/jbc.274.40.28476
  364. 10.1016/S1050-1738(01)00112-8
  365. ReverterD, StroblS, Fernandez-CatalanC, SorimachiH, SuzukiK,andBodeW. Basis for possible calcium-induced activation mechanisms of calpains.Biol Chem382: 753–766, 2001. (10.1515/BC.2001.091)
  366. 10.1016/0092-8674(95)90368-2
  367. 10.1083/jcb.151.7.1583
  368. 10.1006/excr.2000.5048
  369. 10.1084/jem.194.3.247
  370. 10.1073/pnas.93.8.3428
  371. 10.1006/abbi.1997.0361
  372. 10.1021/bi00117a026
  373. SaidoTC, MizunoK,andSuzukiK. Proteolysis of protein kinase C by calpain: effect of acidic phospholipids.Biomed Biochim Acta50: 485–487, 1991.
  374. 10.1093/oxfordjournals.jbchem.a123723
  375. 10.1016/0014-5793(94)00487-0
  376. SaidoTC, ShibataM, TakenawaT, MurofushiH,andSuzukiK. Positive regulation of μ-calpain action by polyphosphoinositides.J Biol Chem267: 24585–24590, 1992. (10.1016/S0021-9258(18)35804-6)
  377. 10.1096/fasebj.8.11.8070630
  378. SaidoTC, SuzukiH, YamazakiH, TanoueK,andSuzukiK. In situ capture of μ-calpain activation in platelets.J Biol Chem268: 7422–7426, 1993. (10.1016/S0021-9258(18)53191-4)
  379. SaidoTC, YokotaM, NagaoS, YamauraI, TaniE, TsuchiyaT, SuzukiK,andKawashimaS. Spatial resolution of fodrin proteolysis in postischemic brain.J Biol Chem268: 25239–25243, 1993. (10.1016/S0021-9258(19)74593-1)
  380. 10.1073/pnas.90.7.2628
  381. 10.1073/pnas.82.18.6075
  382. 10.1016/S0014-5793(97)00819-3
  383. 10.1042/bj2900191
  384. 10.1006/bbrc.1994.1376
  385. 10.1023/A:1006960021281
  386. 10.1055/s-0038-1646569
  387. 10.1038/sj.bjp.0703860
  388. 10.1111/j.1432-1033.1978.tb12768.x
  389. 10.1006/excr.2000.4969
  390. SasakiT, KikuchiT, YumotoN, YoshimuraN,andMurachiT. Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic substrates.J Biol Chem259: 12489–12494, 1984. (10.1016/S0021-9258(18)90773-8)
  391. 10.1006/bbrc.1995.2823
  392. 10.1073/pnas.90.8.3398
  393. 10.1042/bj3620383
  394. 10.1074/jbc.274.20.14359
  395. 10.1074/jbc.272.3.1694
  396. 10.1016/0014-4827(86)90346-0
  397. 10.1016/0014-4827(86)90072-8
  398. 10.1126/science.2834825
  399. 10.1093/nar/28.1.231
  400. 10.1073/pnas.95.11.5857
  401. 10.1152/physrev.2001.81.2.741
  402. 10.2527/1996.742380x
  403. ShannonJDandGollDE. Properties of a protein that is purified from bovine skeletal muscle that inhibits the Ca2+-dependent proteinase. In:Intracellular Protein Catabolism, edited by Khairallah EA, Bird JWC, and Bond JS. New York: Liss, 1985, p. 257–259.
  404. 10.1016/S0014-5793(98)01674-3
  405. ShearerTR, MaH, ShihM, FukiageC,andAzumaM. Calpains in the lens of the eye. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease,edited by Wang KKW and Yuen P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 331–347.
  406. 10.1016/0006-291X(92)91754-E
  407. 10.1002/(SICI)1097-4547(19990301)55:5<533::AID-JNR1>3.0.CO;2-8
  408. 10.1073/pnas.96.20.11486
  409. 10.1016/0925-4439(93)90087-H
  410. 10.2527/2001.792554x
  411. 10.2527/2001.792552x
  412. SokolSBandKuwabaraPE. Proteolysis inCaenorhabditis eleganssex determination: cleavage of TRA-2A by TRA-3.Genes Dev14: 901–906, 2000.
  413. 10.1074/jbc.271.43.26690
  414. SorimachiH, Imajoh-OhmiS, EmoriY, KawasakiH, OhnoS, MinamiY,andSuzukiK. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and μ-types. Specific expression of the mRNA in skeletal muscle.J Biol Chem264: 20106–20111, 1989. (10.1016/S0021-9258(19)47225-6)
  415. SorimachiH, IshiuraS,andSuzukiK. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca2+-binding domain.J Biol Chem268: 19476–19482, 1993. (10.1016/S0021-9258(19)36540-8)
  416. 10.1042/bj3280721
  417. 10.1074/jbc.270.52.31158
  418. 10.1016/0014-5793(94)80595-4
  419. 10.1016/0167-4838(92)90037-E
  420. 10.1093/oxfordjournals.jbchem.a002903
  421. SorimachiH, Toyama-SorimachiN, SaidoTC, KawasakiN, SugitaH, MiyasakaM, ArahataK, IshiuraS,andSuzukiK. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation resulting in disappearance from muscle.J Biol Chem268: 10593–10605, 1993. (10.1016/S0021-9258(18)82240-2)
  422. 10.1016/0167-4781(95)00027-E
  423. 10.1074/jbc.270.18.10909
  424. 10.1073/pnas.132269299
  425. 10.1016/0014-4827(92)90045-A
  426. SquierMKTandCohenJJ. Calpain, an upstream regulator of thymocyte apoptosis.J Immunol158: 3690–3697, 1997. (10.4049/jimmunol.158.8.3690)
  427. 10.1002/(SICI)1097-4652(199903)178:3<311::AID-JCP5>3.0.CO;2-T
  428. 10.1021/bi962034i
  429. 10.1042/bj3230685
  430. 10.1073/pnas.97.2.588
  431. 10.1006/bbrc.1999.0407
  432. 10.1016/0065-227X(96)81663-7
  433. SuzukiK. The structure of the calpains and the calpain gene. In:Intracellular Calcium-Dependent Proteolysis, edited by Mellgren RL and Murachi T. Boca Raton, FL: CRC, 1990, p. 25–35.
  434. SuzukiK. Nomenclature of calcium dependent proteinase.Biomed Biochim Acta50: 483–484, 1991.
  435. 10.1016/0014-5793(87)80828-1
  436. 10.1002/art.1780330516
  437. SuzukiK, SorimachiH, HataA, OhnoS, EmoriY, KawasakiH, SaidoT, Imajoh-OhmiS,andAkitaY. Calcuim-dependent protease: a novel molecular species, regulation of gene-expression and activation at the cell membrane. In:Neurotoxicity of Excitatory Amino Acids, edited by Guidoffi A. New York: Raven, 1990, p. 79–93.
  438. 10.1515/bchm3.1995.376.9.523
  439. 10.1093/oxfordjournals.jbchem.a133656
  440. 10.1093/oxfordjournals.jbchem.a133463
  441. SzpacenkoA, KayJ, GollDE,andOtsukaY. A different form of the Ca2+-dependent proteinase activated by micromolar levels of Ca2+. In:Proceedings of Symposium on Proteinases and Their Inhibitors: Structure, Function, and Applied Aspects, edited by Turk V and Vitale LJ. Oxford, UK: Pergamon, 1981, p. 151–161.
  442. 10.1093/hmg/9.9.1393
  443. 10.1006/bbrc.1999.0903
  444. 10.1016/0014-5793(95)00219-Y
  445. 10.1021/bi00406a024
  446. 10.1093/oxfordjournals.jbchem.a134134
  447. TakanoE, UedaM, TsunekawaS, MurakamiT, MakiM, HatanakaM,andMurachiT. Molecular diversity of erythrocyte calpastatin.Biomed Biochim Acta50: 517–521, 1991.
  448. 10.1093/oxfordjournals.jbchem.a022733
  449. 10.1016/0014-5793(86)80060-6
  450. 10.1021/bi00406a059
  451. 10.1016/0022-2828(88)90576-7
  452. TaylorRG, ChristiansenJA,andGollDE. Immunolocalization of the calpains and calpastatin in human and bovine platelets.Biomed Biochem Acta50: 491–498, 1991.
  453. 10.2527/1995.7351351x
  454. 10.1006/excr.1998.4362
  455. 10.1038/35048500
  456. 10.1128/MCB.15.2.824
  457. ThompsonVFandGollDE. Purification of μ-calpain, m-calpain, and calpastatin from animal tissues. In:Methods in Molecular Biology. Calpain Methods and Protocols, edited by Elce JS. Totowa, NJ: Humana, 2000, vol.144, p. 3–16.
  458. ThompsonVF, GollDE,andKleeseWC. Effects of autolysis on the catalytic properties of the calpains.Biol Chem Hoppe-Seyler371Suppl: 177–185, 1990.
  459. ThompsonVF, LawsonKR, BarlowJ,andGollDE. Digestion of μ-and m-calpain by trypsin and chymotrypsin.Biochim Biophys Acta.In press.
  460. 10.1006/abio.1999.4475
  461. 10.1016/S1357-2725(99)00095-3
  462. 10.1006/bbrc.2001.4279
  463. 10.1152/ajpheart.2001.281.3.H1286
  464. 10.1016/S0304-3940(98)00348-6
  465. 10.1016/0014-5793(89)80783-5
  466. 10.1016/0006-291X(90)91035-Q
  467. 10.1016/S0022-510X(97)00309-2
  468. 10.1073/pnas.040565597
  469. 10.1074/jbc.272.41.25802
  470. 10.1002/syn.1053
  471. WangLF, WeiSG, MiaoSY, LiuQY,andKoideSS. Calpastatin gene in human testis.Biochem Mol Biol Int33: 245–252, 1994.
  472. WangKKWandYuenP-W. Development and therapeutic potential of calpain inhibitors.Adv Pharmacol37: 117–152, 1997. (10.1016/S1054-3589(08)60949-7)
  473. WangKWWandYuenP-W.Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease. Philadelphia, PA: Taylor & Francis, 1999.
  474. WangKKWandYuenP-W. Calpain substrates, assay methods, regulation, and its inhibitory agents. In:Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease,edited by Wang KKW and Yuen P-W. Philadelphia, PA: Taylor & Francis, 1999, p. 77–101.
  475. 10.1038/342505a0
  476. 10.1016/S0167-4838(02)00288-1
  477. 10.1517/13543776.8.12.1707
  478. 10.1096/fasebj.13.11.1435
  479. 10.1006/jmbi.2000.3550
  480. WolfBB, GoldsteinJC, StennickeHR, BeereH, Amarante-MendesGP, SalversenGS,andGreenDR. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation.Blood94: 1683–1692, 1999. (10.1182/blood.V94.5.1683.417k37_1683_1692)
  481. 10.1016/0167-4838(89)90280-X
  482. 10.1016/0024-3205(89)90074-X
  483. 10.1074/jbc.274.12.8309
  484. 10.1110/ps.ps.36701
  485. XuYandMellgrenRL. Calpain inhibition decreases the growth rate of mammalian cell colonies.J Biol Chem277: 21,474–21,479, 2002. (10.1074/jbc.M111689200)
  486. 10.1179/016164101101198776
  487. 10.1016/S0301-0082(00)00006-X
  488. 10.1074/jbc.M104161200
  489. YangHQ, MaH, TakanoE, HatanakaM,andMakiM. Analysis of calcuim-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulin-like domain of μ-calpain large subunit.J Biol Chem269: 18977–18984, 1994. (10.1016/S0021-9258(17)32262-7)
  490. 10.1006/mgme.2001.3171
  491. 10.1161/01.RES.77.3.603
  492. 10.1093/oxfordjournals.jbchem.a123918
  493. 10.1111/j.1349-7006.2000.tb00967.x
  494. 10.1007/BF00219201
  495. 10.1016/0014-5793(94)01401-L
  496. 10.1006/bbrc.1995.1348
  497. 10.1007/BF00141549
  498. 10.1038/sj.onc.1200841
  499. 10.1006/bbrc.1996.1601
  500. 10.1016/0006-291X(88)90601-8
  501. 10.1097/00004647-199802000-00006
  502. 10.1080/15216540050176610
  503. 10.1016/0003-9861(88)90278-0
  504. 10.1016/0167-4838(91)99009-H
Dates
Type When
Created 10 years, 5 months ago (March 3, 2015, 3:59 p.m.)
Deposited 2 years ago (Aug. 8, 2023, 11:23 a.m.)
Indexed 1 day, 15 hours ago (Aug. 31, 2025, 6:02 a.m.)
Issued 22 years, 2 months ago (July 1, 2003)
Published 22 years, 2 months ago (July 1, 2003)
Published Print 22 years, 2 months ago (July 1, 2003)
Funders 0

None

@article{GOLL_2003, title={The Calpain System}, volume={83}, ISSN={1522-1210}, url={http://dx.doi.org/10.1152/physrev.00029.2002}, DOI={10.1152/physrev.00029.2002}, number={3}, journal={Physiological Reviews}, publisher={American Physiological Society}, author={GOLL, DARREL E. and THOMPSON, VALERY F. and LI, HONGQI and WEI, WEI and CONG, JINYANG}, year={2003}, month=jul, pages={731–801} }