Crossref journal-article
American Physiological Society
Journal of Neurophysiology (24)
Abstract

When the local field potential of a cortical network displays coherent fast oscillations (∼40-Hz gamma or ∼200-Hz sharp-wave ripples), the spike trains of constituent neurons are typically irregular and sparse. The dichotomy between rhythmic local field and stochastic spike trains presents a challenge to the theory of brain rhythms in the framework of coupled oscillators. Previous studies have shown that when noise is large and recurrent inhibition is strong, a coherent network rhythm can be generated while single neurons fire intermittently at low rates compared to the frequency of the oscillation. However, these studies used too simplified synaptic kinetics to allow quantitative predictions of the population rhythmic frequency. Here we show how to derive quantitatively the coherent oscillation frequency for a randomly connected network of leaky integrate-and-fire neurons with realistic synaptic parameters. In a noise-dominated interneuronal network, the oscillation frequency depends much more on the shortest synaptic time constants (delay and rise time) than on the longer synaptic decay time, and ∼200-Hz frequency can be realized with synaptic time constants taken from slice data. In a network composed of both interneurons and excitatory cells, the rhythmogenesis is a compromise between two scenarios: the fast purely interneuronal mechanism, and the slower feedback mechanism (relying on the excitatory-inhibitory loop). The properties of the rhythm are determined essentially by the ratio of time scales of excitatory and inhibitory currents and by the balance between the mean recurrent excitation and inhibition. Faster excitation than inhibition, or a higher excitation/inhibition ratio, favors the feedback loop and a much slower oscillation (typically in the gamma range).

Bibliography

Brunel, N., & Wang, X.-J. (2003). What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance. Journal of Neurophysiology, 90(1), 415–430.

Authors 2
  1. Nicolas Brunel (first)
  2. Xiao-Jing Wang (additional)
References 81 Referenced 737
  1. 10.1103/PhysRevE.48.1483
  2. 10.1152/jn.1999.82.3.1295
  3. 10.1523/JNEUROSCI.21-08-02687.2001
  4. 10.1073/pnas.192233099
  5. 10.1523/JNEUROSCI.15-01-00047.1995
  6. 10.1023/A:1008925309027
  7. 10.1103/PhysRevLett.86.2186
  8. 10.1162/089976699300016179
  9. 10.1523/JNEUROSCI.23-03-01013.2003
  10. 10.1111/j.1469-7793.1998.117by.x
  11. 10.1113/jphysiol.1997.sp022053
  12. 10.1126/science.1589772
  13. 10.1016/S0896-6273(00)80525-5
  14. 10.1523/JNEUROSCI.19-16-j0001.1999
  15. 10.1523/JNEUROSCI.19-01-00274.1999
  16. Deuchars J and Thomson AM. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74: 1009–1018, 1996.
  17. 10.1038/28184
  18. 10.1016/0166-2236(92)90039-B
  19. 10.1002/(SICI)1098-1063(2000)10:2<187::AID-HIPO8>3.0.CO;2-M
  20. 10.1038/28179
  21. 10.1162/089976602320264015
  22. Freeman WJ. Mass Action in the Nervous System. New York: Academic Press, 1975.
  23. 10.1126/science.1055465
  24. 10.1152/jn.2002.88.2.761
  25. 10.1103/PhysRevE.51.738
  26. 10.1162/neco.1996.8.8.1653
  27. 10.1162/089976600300015529
  28. 10.1016/0167-2789(94)90214-3
  29. 10.1152/jn.2001.86.4.1884
  30. 10.1126/science.287.5451.273
  31. Hansel D and Mato G. Existence and stability of persistent states in large neuronal networks. Phys Rev Lett 10: 4175–4178, 2001. (10.1103/PhysRevLett.86.4175)
  32. 10.1162/089976603321043685
  33. 10.1162/neco.1995.7.2.307
  34. 10.1162/089976698300017845
  35. 10.1007/BF00158335
  36. 10.1016/0896-6273(90)90162-9
  37. 10.1016/S0896-6273(01)00387-7
  38. 10.1016/S0166-2236(00)01547-2
  39. 10.1016/S0166-2236(96)10023-0
  40. 10.1152/jn.2002.88.2.1016
  41. 10.1152/jn.2000.84.3.1505
  42. 10.1523/JNEUROSCI.17-17-06783.1997
  43. 10.1002/cpa.3160390504
  44. 10.1073/pnas.91.22.10586
  45. 10.1523/JNEUROSCI.20-15-05594.2000
  46. Kuramoto Y. Chemical Oscillations, Waves and Turbulence. New York: Springer-Verlag, 1984. (10.1007/978-3-642-69689-3)
  47. 10.1152/jn.1982.47.5.845
  48. 10.1088/0954-898X_11_4_304
  49. 10.1038/35084005
  50. 10.1146/annurev.neuro.21.1.25
  51. 10.1113/jphysiol.1997.sp022031
  52. 10.1113/jphysiol.1986.sp016055
  53. 10.1162/089976600300015286
  54. Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. Numerical Recipes in C. Cambridge, UK: Cambridge Univ. Press, 1992.
  55. 10.1152/jn.1996.75.4.1573
  56. 10.1016/S0896-6273(01)00410-X
  57. 10.1023/A:1012885314187
  58. 10.1016/S0896-6273(00)80629-7
  59. 10.1113/jphysiol.1997.sp022054
  60. 10.1523/JNEUROSCI.18-11-04255.1998
  61. 10.1007/s00422-002-0363-9
  62. 10.1016/S0167-2789(97)00312-6
  63. 10.1088/0954-898X_11_1_301
  64. 10.1523/JNEUROSCI.20-06-02086.2000
  65. 10.1016/S0306-4522(98)00755-6
  66. 10.1113/jphysiol.1996.sp021397
  67. 10.1088/0954-898X_4_3_002
  68. 10.1523/JNEUROSCI.17-11-04382.1997
  69. Tuckwell HC. Introduction to Theoretical Neurobiology. Cambridge, UK: Cambridge Univ. Press, 1988. (10.1017/CBO9780511623202)
  70. 10.1007/BF00961879
  71. 10.1126/science.274.5293.1724
  72. 10.1111/j.1469-7793.1998.755bv.x
  73. 10.1523/JNEUROSCI.19-21-09587.1999
  74. 10.1523/JNEUROSCI.16-20-06402.1996
  75. 10.1073/pnas.92.12.5577
  76. 10.1162/neco.1992.4.1.84
  77. 10.1023/A:1008841325921
  78. 10.1016/S0006-3495(72)86068-5
  79. 10.1007/BF00288786
  80. 10.1111/j.1469-7793.1998.715bv.x
  81. 10.1016/S0006-8993(97)01311-5
Dates
Type When
Created 19 years, 2 months ago (May 31, 2006, 2:01 a.m.)
Deposited 5 years, 11 months ago (Sept. 9, 2019, 12:27 a.m.)
Indexed 2 days, 9 hours ago (Aug. 27, 2025, 12:36 p.m.)
Issued 22 years, 1 month ago (July 1, 2003)
Published 22 years, 1 month ago (July 1, 2003)
Published Print 22 years, 1 month ago (July 1, 2003)
Funders 0

None

@article{Brunel_2003, title={What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance}, volume={90}, ISSN={1522-1598}, url={http://dx.doi.org/10.1152/jn.01095.2002}, DOI={10.1152/jn.01095.2002}, number={1}, journal={Journal of Neurophysiology}, publisher={American Physiological Society}, author={Brunel, Nicolas and Wang, Xiao-Jing}, year={2003}, month=jul, pages={415–430} }