Abstract
When the local field potential of a cortical network displays coherent fast oscillations (∼40-Hz gamma or ∼200-Hz sharp-wave ripples), the spike trains of constituent neurons are typically irregular and sparse. The dichotomy between rhythmic local field and stochastic spike trains presents a challenge to the theory of brain rhythms in the framework of coupled oscillators. Previous studies have shown that when noise is large and recurrent inhibition is strong, a coherent network rhythm can be generated while single neurons fire intermittently at low rates compared to the frequency of the oscillation. However, these studies used too simplified synaptic kinetics to allow quantitative predictions of the population rhythmic frequency. Here we show how to derive quantitatively the coherent oscillation frequency for a randomly connected network of leaky integrate-and-fire neurons with realistic synaptic parameters. In a noise-dominated interneuronal network, the oscillation frequency depends much more on the shortest synaptic time constants (delay and rise time) than on the longer synaptic decay time, and ∼200-Hz frequency can be realized with synaptic time constants taken from slice data. In a network composed of both interneurons and excitatory cells, the rhythmogenesis is a compromise between two scenarios: the fast purely interneuronal mechanism, and the slower feedback mechanism (relying on the excitatory-inhibitory loop). The properties of the rhythm are determined essentially by the ratio of time scales of excitatory and inhibitory currents and by the balance between the mean recurrent excitation and inhibition. Faster excitation than inhibition, or a higher excitation/inhibition ratio, favors the feedback loop and a much slower oscillation (typically in the gamma range).
References
81
Referenced
737
10.1103/PhysRevE.48.1483
10.1152/jn.1999.82.3.1295
10.1523/JNEUROSCI.21-08-02687.2001
10.1073/pnas.192233099
10.1523/JNEUROSCI.15-01-00047.1995
10.1023/A:1008925309027
10.1103/PhysRevLett.86.2186
10.1162/089976699300016179
10.1523/JNEUROSCI.23-03-01013.2003
10.1111/j.1469-7793.1998.117by.x
10.1113/jphysiol.1997.sp022053
10.1126/science.1589772
10.1016/S0896-6273(00)80525-5
10.1523/JNEUROSCI.19-16-j0001.1999
10.1523/JNEUROSCI.19-01-00274.1999
- Deuchars J and Thomson AM. CA1 pyramid-pyramid connections in rat hippocampus in vitro: dual intracellular recordings with biocytin filling. Neuroscience 74: 1009–1018, 1996.
10.1038/28184
10.1016/0166-2236(92)90039-B
10.1002/(SICI)1098-1063(2000)10:2<187::AID-HIPO8>3.0.CO;2-M
10.1038/28179
10.1162/089976602320264015
- Freeman WJ. Mass Action in the Nervous System. New York: Academic Press, 1975.
10.1126/science.1055465
10.1152/jn.2002.88.2.761
10.1103/PhysRevE.51.738
10.1162/neco.1996.8.8.1653
10.1162/089976600300015529
10.1016/0167-2789(94)90214-3
10.1152/jn.2001.86.4.1884
10.1126/science.287.5451.273
-
Hansel D and Mato G. Existence and stability of persistent states in large neuronal networks. Phys Rev Lett 10: 4175–4178, 2001.
(
10.1103/PhysRevLett.86.4175
) 10.1162/089976603321043685
10.1162/neco.1995.7.2.307
10.1162/089976698300017845
10.1007/BF00158335
10.1016/0896-6273(90)90162-9
10.1016/S0896-6273(01)00387-7
10.1016/S0166-2236(00)01547-2
10.1016/S0166-2236(96)10023-0
10.1152/jn.2002.88.2.1016
10.1152/jn.2000.84.3.1505
10.1523/JNEUROSCI.17-17-06783.1997
10.1002/cpa.3160390504
10.1073/pnas.91.22.10586
10.1523/JNEUROSCI.20-15-05594.2000
-
Kuramoto Y. Chemical Oscillations, Waves and Turbulence. New York: Springer-Verlag, 1984.
(
10.1007/978-3-642-69689-3
) 10.1152/jn.1982.47.5.845
10.1088/0954-898X_11_4_304
10.1038/35084005
10.1146/annurev.neuro.21.1.25
10.1113/jphysiol.1997.sp022031
10.1113/jphysiol.1986.sp016055
10.1162/089976600300015286
- Press WH, Teukolsky SA, Vetterling WT, and Flannery BP. Numerical Recipes in C. Cambridge, UK: Cambridge Univ. Press, 1992.
10.1152/jn.1996.75.4.1573
10.1016/S0896-6273(01)00410-X
10.1023/A:1012885314187
10.1016/S0896-6273(00)80629-7
10.1113/jphysiol.1997.sp022054
10.1523/JNEUROSCI.18-11-04255.1998
10.1007/s00422-002-0363-9
10.1016/S0167-2789(97)00312-6
10.1088/0954-898X_11_1_301
10.1523/JNEUROSCI.20-06-02086.2000
10.1016/S0306-4522(98)00755-6
10.1113/jphysiol.1996.sp021397
10.1088/0954-898X_4_3_002
10.1523/JNEUROSCI.17-11-04382.1997
-
Tuckwell HC. Introduction to Theoretical Neurobiology. Cambridge, UK: Cambridge Univ. Press, 1988.
(
10.1017/CBO9780511623202
) 10.1007/BF00961879
10.1126/science.274.5293.1724
10.1111/j.1469-7793.1998.755bv.x
10.1523/JNEUROSCI.19-21-09587.1999
10.1523/JNEUROSCI.16-20-06402.1996
10.1073/pnas.92.12.5577
10.1162/neco.1992.4.1.84
10.1023/A:1008841325921
10.1016/S0006-3495(72)86068-5
10.1007/BF00288786
10.1111/j.1469-7793.1998.715bv.x
10.1016/S0006-8993(97)01311-5
Dates
Type | When |
---|---|
Created | 19 years, 2 months ago (May 31, 2006, 2:01 a.m.) |
Deposited | 5 years, 11 months ago (Sept. 9, 2019, 12:27 a.m.) |
Indexed | 2 days, 9 hours ago (Aug. 27, 2025, 12:36 p.m.) |
Issued | 22 years, 1 month ago (July 1, 2003) |
Published | 22 years, 1 month ago (July 1, 2003) |
Published Print | 22 years, 1 month ago (July 1, 2003) |
@article{Brunel_2003, title={What Determines the Frequency of Fast Network Oscillations With Irregular Neural Discharges? I. Synaptic Dynamics and Excitation-Inhibition Balance}, volume={90}, ISSN={1522-1598}, url={http://dx.doi.org/10.1152/jn.01095.2002}, DOI={10.1152/jn.01095.2002}, number={1}, journal={Journal of Neurophysiology}, publisher={American Physiological Society}, author={Brunel, Nicolas and Wang, Xiao-Jing}, year={2003}, month=jul, pages={415–430} }