10.1152/ajprenal.2001.281.3.f391
Crossref journal-article
American Physiological Society
American Journal of Physiology-Renal Physiology (24)
Abstract

The epithelial Na+channel (ENaC) plays a key role in the regulation of Na+and water absorption in several epithelia, including those of the distal nephron, distal colon, and lung. Accordingly, mutations in ENaC leading to reduced or increased channel activity cause human diseases such as pseudohypoaldosteronism type I or Liddle's syndrome, respectively. The gain of ENaC function in Liddle's syndrome is associated with increased activity and stability of the channel at the plasma membrane. Thus understanding the regulation of channel processing and trafficking to and stability at the cell surface is of fundamental importance. This review describes some of the recent advances in our understanding of ENaC trafficking, including the role of glycosylation, ENaC solubility in nonionic detergent, targeting signal(s) and hormones. It also describes the regulation of ENaC stability at the cell surface and the roles of the ubiquitin ligase Nedd4 (and ubiquitination) and clathrin-mediated endocytosis in that regulation.

Bibliography

Rotin, D., Kanelis, V., & Schild, L. (2001). Trafficking and cell surface stability of ENaC. American Journal of Physiology-Renal Physiology, 281(3), F391–F399.

Authors 3
  1. Daniela Rotin (first)
  2. Voula Kanelis (additional)
  3. Laurent Schild (additional)
References 90 Referenced 98
  1. 10.1172/JCI5713
  2. 10.1074/jbc.272.43.27295
  3. 10.1074/jbc.274.53.37834
  4. 10.1172/JCI3971
  5. 10.1074/jbc.271.30.17704
  6. 10.1002/j.1460-2075.1996.tb00965.x
  7. 10.1056/NEJM199401203300305
  8. 10.1007/BF01869456
  9. 10.1038/361467a0
  10. 10.1152/ajpcell.1994.267.6.C1682
  11. 10.1038/367463a0
  12. 10.1074/jbc.274.46.32889
  13. 10.1038/ng0396-248
  14. 10.1073/pnas.96.5.2514
  15. 10.1074/jbc.273.35.22693
  16. 10.1074/jbc.273.14.8317
  17. 10.1074/jbc.272.52.32919
  18. 10.1083/jcb.127.6.1907
  19. 10.1152/ajprenal.2000.279.1.F46
  20. 10.1007/s004240050898
  21. 10.1152/ajpcell.1997.272.1.C131
  22. 10.1042/bj3450503
  23. 10.1093/emboj/17.2.344
  24. 10.1073/pnas.93.26.15370
  25. 10.1152/ajprenal.2001.280.1.F112
  26. 10.1152/physrev.1997.77.2.359
  27. 10.1091/mbc.10.2.455
  28. 10.1074/jbc.273.45.30012
  29. 10.1093/emboj/16.5.899
  30. 10.1038/ng0995-76
  31. 10.1073/pnas.92.25.11495
  32. 10.1074/jbc.C000906200
  33. 10.1074/jbc.274.18.12525
  34. 10.1146/annurev.biochem.67.1.425
  35. 10.1096/fasebj.11.14.9409540
  36. 10.1038/77923
  37. 10.1073/pnas.94.21.11710
  38. 10.1530/eje.0.1380691
  39. 10.1085/jgp.111.6.825
  40. 10.1074/jbc.274.53.37845
  41. 10.1096/fj.00-0191com
  42. 10.1038/87562
  43. 10.1152/ajprenal.1994.266.3.F506
  44. 10.1074/jbc.273.22.13469
  45. 10.1016/0006-291X(92)91747-E
  46. 10.1083/jcb.142.6.1413
  47. 10.1016/0014-5793(93)81336-X
  48. 10.1152/ajprenal.2000.279.2.F252
  49. 10.1152/ajprenal.2001.280.4.F675
  50. 10.1172/JCI7840
  51. 10.1681/ASN.V8121813 / J Am Soc Nephrol by May A (1997)
  52. 10.1152/ajpcell.1995.268.5.C1157
  53. 10.1152/ajplung.1994.266.6.L728
  54. 10.1073/pnas.96.4.1727
  55. 10.1074/jbc.274.24.16973
  56. 10.1126/science.282.5392.1327
  57. 10.1085/jgp.102.1.25
  58. 10.1083/jcb.149.7.1473
  59. 10.1074/jbc.272.51.32329
  60. 10.1042/bj3360705
  61. 10.1152/ajpcell.1999.276.6.C1346
  62. 10.1074/jbc.274.43.30345
  63. 10.1016/S0021-9258(18)99972-2 / J Biol Chem by Renard S (1994)
  64. 10.1073/pnas.051603198
  65. 10.1002/j.1460-2075.1994.tb06766.x
  66. 10.1007/s00232001079
  67. 10.1021/bi00184a033
  68. 10.1074/jbc.274.30.20812
  69. 10.1073/pnas.92.12.5699
  70. 10.1002/j.1460-2075.1996.tb00594.x
  71. 10.1074/jbc.272.41.25537
  72. 10.1016/0092-8674(94)90250-X
  73. 10.1038/42408
  74. 10.1074/jbc.273.2.681
  75. 10.1016/S0021-9258(19)51094-8 / J Biol Chem by Snyder PM (1994)
  76. 10.1016/0092-8674(95)90212-0
  77. 10.1002/j.1460-2075.1996.tb00593.x
  78. 10.1093/emboj/16.21.6325
  79. 10.1152/ajpcell.1997.272.6.C1871
  80. 10.1038/ng0696-248
  81. 10.1172/JCI118606
  82. 10.1074/jbc.273.46.30344
  83. 10.1038/77929
  84. 10.1006/geno.1995.1188
  85. 10.1128/MCB.13.4.2031
  86. 10.1074/jbc.M003822200
  87. 10.1053/ajkd.2001.22072
  88. 10.1152/physrev.1999.79.1.73
  89. 10.1038/77891
  90. 10.1074/jbc.274.33.23286
Dates
Type When
Created 7 years, 8 months ago (Dec. 23, 2017, 9:12 a.m.)
Deposited 3 years ago (Aug. 10, 2022, 11:44 p.m.)
Indexed 1 week, 2 days ago (Aug. 26, 2025, 2:37 a.m.)
Issued 24 years ago (Sept. 1, 2001)
Published 24 years ago (Sept. 1, 2001)
Published Print 24 years ago (Sept. 1, 2001)
Funders 0

None

@article{Rotin_2001, title={Trafficking and cell surface stability of ENaC}, volume={281}, ISSN={1522-1466}, url={http://dx.doi.org/10.1152/ajprenal.2001.281.3.f391}, DOI={10.1152/ajprenal.2001.281.3.f391}, number={3}, journal={American Journal of Physiology-Renal Physiology}, publisher={American Physiological Society}, author={Rotin, Daniela and Kanelis, Voula and Schild, Laurent}, year={2001}, month=sep, pages={F391–F399} }