Crossref journal-article
Annual Reviews
Annual Review of Microbiology (22)
Abstract

▪ Abstract  The population structures of bacterial species are complex and often controversial. To a large extent, this is due to uncertainty about the frequency and impact of recombination in bacteria. The existence of clones within bacterial populations, and of linkage disequilibrium between alleles at different loci, is often cited as evidence for low rates of recombination. However, clones and linkage disequilibrium are almost inevitable in species that divide by binary fission and can be present in populations where recombination is frequent. In recent years, it has become possible to directly compare rates of recombination in different species. These studies indicate that in many bacterial species, including Neisseria meningitidis, Streptococcus pneumoniae, and Staphylococcus aureus, evolutionary change at neutral (housekeeping) loci is more likely to occur by recombination than mutation and can result in the elimination of any deep-rooted phylogenetic signal. In such species, the long-term evolution of the population is dominated by recombination, but this does not occur at a sufficiently high frequency to prevent the emergence of adaptive clones, although these are relatively short-lived and rapidly diversify.

Bibliography

Feil, E. J., & Spratt, B. G. (2001). Recombination and the Population Structures of Bacterial Pathogens. Annual Review of Microbiology, 55(1), 561–590.

Authors 2
  1. Edward J. Feil (first)
  2. Brian G. Spratt (additional)
References 90 Referenced 265
  1. 10.1046/j.1365-2958.1999.01382.x
  2. 10.1073/pnas.96.24.14043
  3. 10.1073/pnas.85.20.7753
  4. 10.1128/jb.176.2.333-337.1994
  5. 10.1073/pnas.91.4.1280
  6. BURST available athttp://www.mlst.net
  7. 10.1073/pnas.83.13.4927
  8. 10.1128/iai.56.8.2060-2068.1988 / Infect. Immun. by Caugant DA (1988)
  9. 10.1128/jb.169.6.2781-2792.1987
  10. 10.1126/science.8153624
  11. 10.1073/pnas.86.22.8842
  12. 10.1073/pnas.87.15.5858
  13. 10.1073/pnas.85.18.7036
  14. 10.1128/jb.173.22.7257-7268.1991
  15. 10.1128/JCM.38.3.1008-1015.2000 / J. Clin. Microbiol. by Enright MC (2000)
  16. 10.1099/00221287-144-11-3049
  17. 10.1128/IAI.69.4.2416-2427.2001
  18. 10.1111/j.1365-2958.1992.tb01493.x
  19. 10.1073/pnas.92.23.10535
  20. 10.1007/BF02202111
  21. 10.1073/pnas.98.1.182
  22. 10.1093/oxfordjournals.molbev.a026061
  23. 10.1093/genetics/154.4.1439 / Genetics by Feil EJ (2000)
  24. 10.1128/jb.178.13.3934-3938.1996
  25. 10.1093/oxfordjournals.molbev.a025760
  26. 10.1016/S0092-8674(00)81985-6
  27. 10.1038/nm0496-437
  28. 10.1099/00221287-143-2-633
  29. 10.1016/S0169-5347(96)10057-4
  30. 10.1126/science.7973728
  31. 10.1046/j.1365-2958.1997.3101672.x
  32. 10.1093/oxfordjournals.molbev.a026159
  33. 10.1093/bioinformatics/14.1.68
  34. 10.1128/jcm.33.7.1860-1866.1995 / J. Clin. Microbiol. by Jauris-Heipke S (1995)
  35. {'key': 'b35', 'first-page': '4492', 'volume': '38', 'author': 'Jolley KA', 'year': '2000', 'journal-title': 'J. Bacteriol.'} / J. Bacteriol. by Jolley KA (2000)
  36. 10.1111/j.1365-2958.1995.tb02415.x
  37. 10.1038/20715
  38. 10.1128/jb.172.3.1374-1379.1990
  39. 10.1093/oxfordjournals.molbev.a025569
  40. 10.1073/pnas.95.16.9413
  41. 10.1093/genetics/99.1.1 / Genetics by Levin BR (1981)
  42. 10.1073/pnas.97.13.6981
  43. 10.1073/pnas.95.6.3140
  44. 10.1016/0966-842X(96)81514-9
  45. {'key': 'b45', 'first-page': '126', 'volume': '34', 'author': 'Maynard Smith J', 'year': '1992', 'journal-title': 'J. Mol. Evol.'} / J. Mol. Evol. by Maynard Smith J (1992)
  46. 10.1038/349029a0
  47. 10.1002/1521-1878(200012)22:12<1115::AID-BIES9>3.3.CO;2-I
  48. 10.1093/oxfordjournals.molbev.a025960
  49. 10.1073/pnas.90.10.4384
  50. 10.1126/science.182.4116.1024
  51. 10.1093/genetics/146.3.745 / Genetics by Milkman R (1997)
  52. 10.1093/genetics/126.3.505 / Genetics by Milkman R (1990)
  53. 10.1046/j.1365-2958.1997.5211882.x
  54. 10.3201/eid0201.960101
  55. 10.1128/jcm.30.8.2058-2063.1992 / J. Clin. Microbiol. by Musser JM (1992)
  56. 10.1128/iai.56.8.1837-1845.1988 / Infect. Immun. by Musser JM (1988)
  57. {'key': 'b57', 'volume-title': 'Molecular Population Genetics and Evolution.', 'author': 'Nei M', 'year': '1975'} / Molecular Population Genetics and Evolution. by Nei M (1975)
  58. 10.1128/jb.174.21.6886-6895.1992
  59. 10.1073/pnas.88.15.6667
  60. 10.1038/35012500
  61. 10.1128/jb.157.2.690-693.1984 / J. Bacteriol. by Ochman H (1984)
  62. {'key': 'b62', 'first-page': '2715', 'volume': '129', 'author': 'Ochman H', 'year': '1983', 'journal-title': 'J. Gen. Microbiol.'} / J. Gen. Microbiol. by Ochman H (1983)
  63. 10.1099/00221287-140-6-1285
  64. 10.1099/00221287-139-11-2603
  65. 10.1007/BF02121318
  66. 10.1016/0378-1097(92)90254-L
  67. 10.1016/0168-9525(93)90067-R
  68. 10.1038/35017546
  69. {'key': 'b69', 'first-page': '539', 'volume': '2', 'author': 'Sawyer SA', 'year': '1989', 'journal-title': 'Mol. Biol. Evol.'} / Mol. Biol. Evol. by Sawyer SA (1989)
  70. 10.1128/aem.51.5.873-884.1986 / Appl. Environ. Microbiol. by Selander RK (1986)
  71. 10.1126/science.6999623
  72. Selander RK, Li J, Nelson K. 1996. Evolutionary genetics ofSalmonella enterica. InEscherichia coli and Salmonella, ed. FC Neidhardt, R Curtiss, JL Ingraham, ECC Lin, KB Low, et al, pp. 2691–707. Washington, DC: ASM
  73. 10.1016/B978-0-12-307211-5.50006-4
  74. 10.1126/science.7542802
  75. 10.1128/jb.172.5.2209-2216.1990
  76. 10.1126/science.8153626
  77. 10.1016/S1369-5274(99)80054-X
  78. Spratt BG, Feil EJ, Smith NH. 2001. The population genetics of bacteria. InMolecular Medical Microbiology, ed. M Sussman, New York: Academic. In press (10.1016/B978-012677530-3/50239-7)
  79. Spratt BG, Smith NH, Zhou J, O'Rourke M, Feil E. 1995. The population genetics of the pathogenicNeisseria. InThe Population Genetics of Bacteria, ed. S Baumberg, JPW Young, EMH Wellington, JR Saunders, pp. 143–60. Cambridge, UK: Cambridge Univ. Press
  80. 10.1073/pnas.86.22.8988
  81. 10.1073/pnas.94.18.9869
  82. 10.1073/pnas.95.21.12619
  83. 10.1016/0076-6879(94)35141-4
  84. Whittam TS. 1996. Genetic variation and evolutionary processes in natural populations ofEscherichia coli. See Ref.72, pp. 270–72
  85. {'key': 'b85', 'first-page': '67', 'volume': '1', 'author': 'Whittam TS', 'year': '1983', 'journal-title': 'Mol. Biol. Evol.'} / Mol. Biol. Evol. by Whittam TS (1983)
  86. 10.1073/pnas.80.6.1751
  87. 10.1046/j.1365-2958.1997.2681633.x
  88. 10.1128/JCM.38.3.977-986.2000 / J. Clin. Microbiol. by Zhou J (2000)
  89. 10.1111/j.1365-2958.1992.tb01387.x
  90. 10.1073/pnas.061386098
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 7:45 a.m.)
Deposited 3 years, 10 months ago (Oct. 14, 2021, 5:54 a.m.)
Indexed 4 months, 3 weeks ago (April 11, 2025, 8:26 a.m.)
Issued 23 years, 11 months ago (Oct. 1, 2001)
Published 23 years, 11 months ago (Oct. 1, 2001)
Published Print 23 years, 11 months ago (Oct. 1, 2001)
Funders 0

None

@article{Feil_2001, title={Recombination and the Population Structures of Bacterial Pathogens}, volume={55}, ISSN={1545-3251}, url={http://dx.doi.org/10.1146/annurev.micro.55.1.561}, DOI={10.1146/annurev.micro.55.1.561}, number={1}, journal={Annual Review of Microbiology}, publisher={Annual Reviews}, author={Feil, Edward J. and Spratt, Brian G.}, year={2001}, month=oct, pages={561–590} }