Abstract
▪ Abstract The glutathione- and thioredoxin-dependent reduction systems are responsible for maintaining the reduced environment of the Escherichia coli and Saccharomyces cerevisiae cytosol. Here we examine the roles of these two cellular reduction systems in the bacterial and yeast defenses against oxidative stress. The transcription of a subset of the genes encoding glutathione biosynthetic enzymes, glutathione reductases, glutaredoxins, thioredoxins, and thioredoxin reductases, as well as glutathione- and thioredoxin-dependent peroxidases is clearly induced by oxidative stress in both organisms. However, only some strains carrying mutations in single genes are hypersensitive to oxidants. This is due, in part, to the redundant effects of the gene products and the overlap between the two reduction systems. The construction of strains carrying mutations in multiple genes is helping to elucidate the different roles of glutathione and thioredoxin, and studies with such strains have recently revealed that these two reduction systems modulate the activities of the E. coli OxyR and SoxR and the S. cerevisiae Yap1p transcriptional regulators of the adaptive responses to oxidative stress.
References
109
Referenced
608
10.1007/BF00229377
10.1093/nar/19.16.4479
10.1016/0304-4165(75)90206-8
10.1073/pnas.91.21.9813
10.1073/pnas.96.11.6161
10.1007/BF01577723
10.1074/jbc.270.48.28635
10.1128/jb.178.19.5610-5614.1996
10.1016/S0021-9258(18)47038-X
/ J. Biol. Chem. by Chae HZ (1994)10.1016/S0021-9258(19)85489-3
/ J. Biol. Chem. by Chae HZ (1993)10.1073/pnas.91.15.7017
10.1007/s004380050017
10.1128/jb.178.7.2131-2135.1996
10.1016/S0092-8674(85)80056-8
10.1073/pnas.86.10.3484
10.1128/MCB.19.12.8302
10.1016/0378-1119(95)00026-3
{'key': 'b18', 'first-page': '1631', 'volume': '128', 'author': 'Davis NK', 'year': '1982', 'journal-title': 'J. Gen. Microbiol.'}
/ J. Gen. Microbiol. by Davis NK (1982)10.1073/pnas.93.18.9449
10.1073/pnas.94.16.8445
10.1021/bi980532g
10.1074/jbc.271.4.1998
10.1016/0076-6879(95)52011-2
10.1128/jb.124.1.140-148.1975
/ J. Bacteriol. by Fuchs JA (1975)10.1016/S0006-291X(87)80197-3
10.1074/jbc.273.29.18382
10.1074/jbc.272.8.5082
10.1073/pnas.93.19.10094
10.1046/j.1365-2958.1996.6351340.x
10.1080/13510002.1996.11747054
10.1007/s002940050079
10.1046/j.1365-2958.1996.d01-1727.x
10.1091/mbc.8.9.1699
10.1128/jb.168.2.1026-1029.1986
10.1073/pnas.87.16.6181
10.1016/0092-8674(88)90393-5
10.1080/09553009114551111
10.1007/BF00312733
10.1074/jbc.270.36.20908
10.1002/j.1460-2075.1994.tb06243.x
10.1016/S0092-8674(00)81864-4
10.1073/pnas.73.7.2275
10.1146/annurev.bi.54.070185.001321
10.1016/0378-1119(91)90238-7
10.1074/jbc.274.38.27002
10.1016/S0167-4781(97)00199-1
10.1016/0014-5793(95)00603-7
10.1074/jbc.274.40.28459
10.1016/S0021-9258(18)94214-6
/ J. Biol. Chem. by Jacobson FS (1989)10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.3.CO;2-J
10.1021/bi9817818
10.1074/jbc.275.4.2924
10.1074/jbc.272.29.18044
10.1016/S0021-9258(18)68840-4
/ J. Biol. Chem. by Kim K (1988)10.1093/mutage/5.1.39
10.1016/0165-7992(86)90087-4
10.1016/S0014-5793(99)00565-7
10.1002/j.1460-2075.1994.tb06304.x
10.1093/emboj/16.7.1710
10.1046/j.1365-2443.1998.00209.x
10.1016/0003-9861(90)90110-K
10.1074/jbc.274.23.16040
10.1074/jbc.274.8.4537
10.1073/pnas.91.4.1328
10.1091/mbc.9.5.1081
10.1074/jbc.272.27.17045
10.1146/annurev.bi.52.070183.003431
10.1128/JB.181.9.2759-2764.1999
/ J. Bacteriol. by Michán C (1999)10.1074/jbc.272.49.30841
10.1093/emboj/16.5.1035
10.1101/gad.3.3.283
10.1016/S0021-9258(18)31570-9
/ J. Biol. Chem. by Muller EGD (1991)10.1016/S0021-9258(19)51107-3
/ J. Biol. Chem. by Muller EGD (1994)10.1091/mbc.7.11.1805
10.1128/jb.174.19.6054-6060.1992
10.1271/bbb1961.54.3145
10.1002/yea.320070907
10.1074/jbc.275.8.5723
10.1074/jbc.274.10.6366
10.1021/bi951888k
10.1074/jbc.272.25.15661
10.1146/annurev.genet.32.1.163
10.1074/jbc.275.4.2505
10.1128/MCB.19.12.8180
10.1073/pnas.85.4.990
10.1111/j.1432-1033.1991.tb16209.x
10.1007/BF00351681
10.1016/S0021-9258(18)68884-2
/ J. Biol. Chem. by Spector A (1988)10.1016/0378-1097(96)00223-6
10.1111/j.1365-2958.1995.tb02407.x
10.1093/emboj/17.19.5543
10.1016/S1369-5274(99)80033-2
10.1128/jb.171.4.2049-2055.1989
10.1126/science.2183352
10.1016/S0891-5849(97)00287-6
10.1128/jb.179.18.5967-5970.1997
10.1016/S0014-5793(99)01013-3
10.1016/0022-2836(89)90104-6
10.1016/S0021-9258(18)86980-0
/ J. Biol. Chem. by Tartaglia LA (1990)10.1128/jb.172.8.4197-4205.1990
10.1128/jb.162.1.448-450.1985
/ J. Bacteriol. by Tuggle CK (1985)10.1074/jbc.274.28.19714
10.1074/jbc.272.12.7908
10.1128/MCB.14.9.5832
10.1074/jbc.270.17.10323
10.1128/jb.173.9.2864-2871.1991
10.1128/jb.174.12.3915-3920.1992
10.1093/emboj/17.24.7416
10.1126/science.279.5357.1718
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 7:45 a.m.) |
Deposited | 3 years, 10 months ago (Oct. 14, 2021, 4:48 a.m.) |
Indexed | 3 weeks, 1 day ago (Aug. 2, 2025, 12:14 a.m.) |
Issued | 24 years, 10 months ago (Oct. 1, 2000) |
Published | 24 years, 10 months ago (Oct. 1, 2000) |
Published Print | 24 years, 10 months ago (Oct. 1, 2000) |
@article{Carmel_Harel_2000, title={Roles of the Glutathione- and Thioredoxin-Dependent Reduction Systems in the Escherichia Coli and Saccharomyces Cerevisiae Responses to Oxidative Stress}, volume={54}, ISSN={1545-3251}, url={http://dx.doi.org/10.1146/annurev.micro.54.1.439}, DOI={10.1146/annurev.micro.54.1.439}, number={1}, journal={Annual Review of Microbiology}, publisher={Annual Reviews}, author={Carmel-Harel, Orna and Storz, Gisela}, year={2000}, month=oct, pages={439–461} }