10.1146/annurev.matsci.38.060407.132431
Crossref journal-article
Annual Reviews
Annual Review of Materials Research (22)
Abstract

The stabilization of nanoscale surficial amorphous films (SAFs) for Bi2O3 on ZnO, VOx on TiO2, SiOx on Si, and several other oxide systems provides evidence for the existence of prewetting phenomena with analogies in water and other simple systems, as well as the stabilization of intergranular amorphous films in ceramics. Experimental results show that in the subeutectic regime, the equilibrium film thickness decreases monotonically with decreasing temperature until it vanishes at a dewetting (prewetting) temperature. With increasing temperatures, nanometer-thick SAFs persist into a solid-liquid coexistence regime, in equilibrium with partial-wetting drops, with a gradual decrease in the macroscopic contact angle upon heating. The presence of an attractive dispersion force can significantly delay or inhibit the (otherwise expected) occurrence of complete wetting at higher temperatures. The equilibrium thickness of SAFs is explained from a balance between several interfacial interactions, including dispersion forces, short-range forces of structural or chemical origins, volumetric free-energy terms, and electrostatic interactions. In a generalized Cahn critical-point wetting model, these SAFs are alternatively considered to be disordered multilayer adsorbates formed from coupled prewetting and premelting transitions.

Bibliography

Luo, J., & Chiang, Y.-M. (2008). Wetting and Prewetting on Ceramic Surfaces. Annual Review of Materials Research, 38(1), 227–249.

Authors 2
  1. Jian Luo (first)
  2. Yet-Ming Chiang (additional)
References 79 Referenced 117
  1. 10.1111/j.1151-2916.1987.tb04846.x
  2. {'key': 'B2', 'first-page': '1002', 'volume': '90', 'author': 'Cannon RM', 'year': '1999', 'journal-title': 'Z. Metall.'} / Z. Metall. by Cannon RM (1999)
  3. {'key': 'B3', 'first-page': '427', 'volume-title': 'Grain Boundary Engineering in Ceramics', 'author': 'Cannon RM', 'year': '2000'} / Grain Boundary Engineering in Ceramics by Cannon RM (2000)
  4. 10.1016/j.msea.2006.01.004
  5. 10.1080/10408430701364388
  6. 10.1016/j.actamat.2004.12.009
  7. 10.1111/j.1151-2916.2001.tb00710.x
  8. 10.3139/146.017948
  9. 10.3139/146.030272
  10. 10.1007/s10853-006-0897-7
  11. 10.1080/095008396180425
  12. 10.1063/1.2138796
  13. 10.1016/j.actamat.2007.01.017
  14. 10.1016/S0955-2219(98)00299-4
  15. 10.1016/S1359-6454(00)00237-8
  16. 10.1021/la0505420
  17. 10.1016/j.msea.2006.01.001
  18. 10.1063/1.2768315
  19. 10.1021/la703331m
  20. 10.1103/PhysRevLett.97.075502
  21. 10.1063/1.434402
  22. 10.1080/00107518908225509
  23. 10.1088/0034-4885/58/1/003
  24. 10.1103/RevModPhys.78.695
  25. 10.1016/j.actamat.2007.10.049
  26. 10.1088/0034-4885/64/9/202
  27. 10.1103/RevModPhys.57.827
  28. {'key': 'B28', 'first-page': '1–218.', 'volume-title': 'Phase Transitions and Critical Phenomena', 'author': 'Dietrich S', 'year': '1988'} / Phase Transitions and Critical Phenomena by Dietrich S (1988)
  29. 10.1103/PhysRevLett.71.2607
  30. 10.1063/1.450029
  31. 10.1016/0039-6028(95)00868-3
  32. 10.1002/bbpc.19981020914
  33. 10.1103/PhysRevB.26.5112
  34. 10.1063/1.1772360
  35. 10.1007/978-3-642-73902-6_16
  36. 10.1103/PhysRevLett.92.205701
  37. 10.1080/14786430410001671403
  38. 10.1080/01418619908212021
  39. {'key': 'B39', 'first-page': '76', 'volume': '204', 'author': 'Phillpot SR', 'year': '1995', 'journal-title': 'J. Eng. Appl. Sci. A'} / J. Eng. Appl. Sci. A by Phillpot SR (1995)
  40. 10.1103/PhysRevLett.96.055505
  41. 10.1103/PhysRevB.74.134101
  42. 10.1103/PhysRevE.70.061606
  43. 10.1016/S0167-2789(02)00377-9
  44. 10.1103/PhysRevB.73.024102
  45. 10.1016/0001-6160(89)90130-2
  46. 10.1126/science.1112399
  47. 10.1111/j.1151-2916.1993.tb03741.x
  48. 10.1111/j.1151-2916.2000.tb01527.x
  49. 10.1111/j.1151-2916.1999.tb01739.x
  50. 10.1111/j.1151-2916.1999.tb01952.x
  51. 10.1111/j.1151-2916.1998.tb02299.x
  52. 10.1016/j.actamat.2004.12.008
  53. 10.1016/S1359-6454(99)00264-5
  54. 10.1016/S1359-6462(97)00171-1
  55. 10.1023/B:INTS.0000028645.30358.f5
  56. 10.1016/S1466-6049(01)00108-8
  57. 10.1016/j.actamat.2004.05.013
  58. 10.1103/PhysRevB.71.104104
  59. 10.1016/0956-7151(92)90021-6
  60. 10.1016/0956-7151(91)90131-J
  61. 10.1016/0956-7151(91)90042-Y
  62. 10.1016/S1359-6454(96)00332-1
  63. 10.1016/S0920-5861(99)00343-0
  64. 10.1016/S0926-860X(97)00021-5
  65. 10.1016/S0360-0564(08)60362-4
  66. 10.1016/S0920-5861(02)00323-1
  67. 10.1016/S0926-860X(96)00179-2
  68. 10.1016/0021-9517(91)90253-Z
  69. 10.1016/j.jeurceramsoc.2005.09.108
  70. 10.1021/ja0166895
  71. 10.1021/jp036993f
  72. 10.1021/nl034422t
  73. 10.1021/nl0486620
  74. 10.1126/science.1125767
  75. 10.1016/0039-6028(95)00032-1
  76. 10.1016/0039-6028(93)91471-Z
  77. 10.1103/PhysRevLett.85.1282
  78. 10.1016/S0167-2789(00)00023-3
  79. 10.1103/PhysRevLett.57.2876
Dates
Type When
Created 17 years, 3 months ago (May 8, 2008, 2:45 p.m.)
Deposited 3 years, 10 months ago (Oct. 13, 2021, 5:10 p.m.)
Indexed 12 hours, 55 minutes ago (Aug. 23, 2025, 9:45 p.m.)
Issued 17 years ago (Aug. 1, 2008)
Published 17 years ago (Aug. 1, 2008)
Published Print 17 years ago (Aug. 1, 2008)
Funders 0

None

@article{Luo_2008, title={Wetting and Prewetting on Ceramic Surfaces}, volume={38}, ISSN={1545-4118}, url={http://dx.doi.org/10.1146/annurev.matsci.38.060407.132431}, DOI={10.1146/annurev.matsci.38.060407.132431}, number={1}, journal={Annual Review of Materials Research}, publisher={Annual Reviews}, author={Luo, Jian and Chiang, Yet-Ming}, year={2008}, month=aug, pages={227–249} }