Abstract
▪ Abstract Disulfide bonds are required for the stability and function of a large number of proteins. Genetic analysis in combination with biochemical studies have elucidated the main catalysts involved in facilitating these processes in the cell. All enzymes involved in thiol-disulfide metabolism have a conserved active site that consists of two cysteine residues, separated by two intervening amino acids, the Cys-Xaa-Xaa-Cys motif. While these enzymes are capable of catalyzing both disulfide bond formation and reduction, they have evolved to perform one or the other reaction more efficiently. In the cytoplasm, multiple pathways are involved in the reduction of disulfide bonds that occur as part of the catalytic cycle of a variety of metabolic enzymes. In the bacterial periplasm, a system for the efficient introduction as well as isomerization of disulfide bonds is in place. In eukaryotes, disulfide bonds are introduced into proteins in the endoplasmic reticulum. Genetic studies have recently begun to reveal new features of this process. While the enzyme mechanisms of thiol-disulfide oxidoreductases have been the subject of much scrutiny, questions remain regarding where and when they act in vivo, their specificities, and the maintenance of the redox environment that determines their function.
References
89
Referenced
234
10.1016/S0021-9258(18)41691-2
/ J. Biol. Chem. by Akiyama Y (1992)10.1046/j.1365-2958.1997.5581925.x
10.1126/science.181.4096.223
10.1074/jbc.272.49.30780
10.1111/j.1365-2958.1994.tb01281.x
10.1073/pnas.90.3.1038
10.1016/0092-8674(91)90532-4
10.1073/pnas.92.14.6229
10.1002/j.1460-2075.1996.tb00626.x
- Chivers PT, Laboissière MCA, Raines RT. 1998. Protein disulfide isomerase: cellular enzymology of the CXXC motif. InProlyl Hydroxylase, Protein Disulfide Isomerase, and Other Structurally Related Proteins, ed. NA Guzman, pp. 487–505. New York: Marcel Dekker
10.1515/bchm.1997.378.8.731
10.1111/j.1365-2958.1995.tb02287.x
10.1073/pnas.90.3.1043
10.1101/gad.11.9.1183
10.1021/bi00011a012
10.1006/jmbi.1995.0309
10.1021/bi971888f
10.1016/S0021-9258(18)96749-9
/ J. Biol. Chem. by De Lorenzo F (1966)10.1128/jb.173.23.7719-7722.1991
10.1126/science.8259521
10.1016/S1097-2765(00)80017-9
10.1002/j.1460-2075.1996.tb00369.x
10.1042/bst0160096
10.1042/bst0090079
10.1111/j.1574-6968.1988.tb02747.x
10.1016/S0021-9258(18)81309-6
/ J. Biol. Chem. by Goldberger RF (1963)10.1016/0092-8674(95)90210-4
10.1002/pro.5560060603
10.1073/pnas.92.21.9895
10.1016/S0021-9258(18)71625-6
/ J. Biol. Chem. by Holmgren A (1989)10.1016/0076-6879(95)52031-7
10.1016/0076-6879(95)52023-6
10.1083/jcb.138.6.1229
10.1016/S0021-9258(18)66820-6
/ J. Biol. Chem. by Huber HE (1986)10.1016/S1359-0278(98)00024-8
10.1126/science.1523409
10.1002/j.1460-2075.1994.tb06841.x
10.1021/bi9707739
10.1016/S0021-9258(19)70458-X
/ J. Biol. Chem. by Kallis GB (1980)10.1002/j.1460-2075.1992.tb05027.x
10.1016/0014-5793(95)00354-C
10.1074/jbc.270.29.17072
10.1046/j.1365-2443.1996.d01-233.x
10.1111/j.1432-1033.1997.t01-1-00037.x
10.1093/emboj/17.4.927
10.1073/pnas.94.22.11857
10.1016/S0021-9258(18)92848-6
/ J. Biol. Chem. by Krause G (1991)10.1073/pnas.91.15.6830
10.1074/jbc.270.47.28006
10.1016/0092-8674(93)90469-7
10.1016/0014-5793(94)01386-F
10.1038/365464a0
10.1074/jbc.272.49.30841
10.1073/pnas.90.15.7084
10.1002/j.1460-2075.1994.tb06471.x
10.1002/j.1460-2075.1995.tb07347.x
10.1002/pro.5560070519
10.1126/science.6369538
10.1016/S0021-9258(19)36501-9
/ J. Biol. Chem. by Noiva R (1993)10.1073/pnas.83.20.7643
10.1101/gad.11.9.1169
10.1016/S1097-2765(00)80018-0
10.1074/jbc.272.25.15661
10.1073/pnas.93.23.13048
10.1128/jb.179.21.6602-6608.1997
10.1038/nsb0697-450
10.1016/S0014-5793(97)00270-6
10.1016/0076-6879(95)52029-5
10.1016/S0021-9258(18)66819-X
/ J. Biol. Chem. by Russel M (1986)10.1128/jb.172.4.1923-1929.1990
10.1016/0014-5793(94)01053-6
10.1021/bi00827a028
10.1002/prot.340020405
10.1002/j.1460-2075.1994.tb06470.x
10.1074/jbc.272.16.10349
10.1074/jbc.272.10.6174
10.1016/S0021-9258(18)47718-6
/ J. Biol. Chem. by Tabor S (1987)10.1128/MCB.12.10.4601
10.1016/S0014-5793(97)00656-X
10.1128/jb.146.3.1059-1066.1981
/ J. Bacteriol. by Tsang ML (1981)10.1042/bj3210413
10.1074/jbc.272.14.8845
10.1021/bi952157n
10.1002/pro.5560020503
10.1006/jmbi.1993.1535
10.1021/bi00070a016
10.1021/bi00183a025
10.1021/bi00015a019
10.1126/science.279.5357.1718
Dates
Type | When |
---|---|
Created | 23 years ago (July 27, 2002, 7:43 a.m.) |
Deposited | 3 years, 10 months ago (Oct. 12, 2021, 8:05 a.m.) |
Indexed | 6 hours, 22 minutes ago (Aug. 26, 2025, 3:03 a.m.) |
Issued | 26 years, 8 months ago (Dec. 1, 1998) |
Published | 26 years, 8 months ago (Dec. 1, 1998) |
Published Print | 26 years, 8 months ago (Dec. 1, 1998) |
@article{Rietsch_1998, title={THE GENETICS OF DISULFIDE BOND METABOLISM}, volume={32}, ISSN={1545-2948}, url={http://dx.doi.org/10.1146/annurev.genet.32.1.163}, DOI={10.1146/annurev.genet.32.1.163}, number={1}, journal={Annual Review of Genetics}, publisher={Annual Reviews}, author={Rietsch, Arne and Beckwith, Jonathan}, year={1998}, month=dec, pages={163–184} }