10.1146/annurev.biophys.29.1.327
Crossref journal-article
Annual Reviews
Annual Review of Biophysics and Biomolecular Structure (22)
Abstract

▪ Abstract  This review describes how kinetic experiments using techniques with dramatically improved time resolution have contributed to understanding mechanisms in protein folding. Optical triggering with nanosecond laser pulses has made it possible to study the fastest-folding proteins as well as fundamental processes in folding for the first time. These include formation of α-helices, β-sheets, and contacts between residues distant in sequence, as well as overall collapse of the polypeptide chain. Improvements in the time resolution of mixing experiments and the use of dynamic nuclear magnetic resonance methods have also allowed kinetic studies of proteins that fold too fast (≳ 103 s−1) to be observed by conventional methods. Simple statistical mechanical models have been extremely useful in interpreting the experimental results. One of the surprises is that models originally developed for explaining the fast kinetics of secondary structure formation in isolated peptides are also successful in calculating folding rates of single domain proteins from their native three-dimensional structure.

Bibliography

Eaton, W. A., Muñoz, V., Hagen, S. J., Jas, G. S., Lapidus, L. J., Henry, E. R., & Hofrichter, J. (2000). Fast Kinetics and Mechanisms in Protein Folding. Annual Review of Biophysics and Biomolecular Structure, 29(1), 327–359.

Authors 7
  1. William A. Eaton (first)
  2. Victor Muñoz (additional)
  3. Stephen J. Hagen (additional)
  4. Gouri S. Jas (additional)
  5. Lisa J. Lapidus (additional)
  6. Eric R. Henry (additional)
  7. James Hofrichter (additional)
References 128 Referenced 438
  1. 10.1016/S0959-440X(99)80027-X
  2. 10.1073/pnas.96.20.11305
  3. 10.1073/pnas.93.12.5759
  4. 10.1038/nsb1196-923
  5. 10.1073/pnas.96.17.9597
  6. 10.1038/nsb0994-584
  7. 10.1016/S0959-440X(98)80043-2
  8. 10.1002/prot.340210302
  9. 10.1073/pnas.84.21.7524
  10. 10.1021/j100356a007
  11. 10.1021/bi00049a011
  12. 10.1038/nsb0497-305
  13. 10.1006/jmbi.1996.0577
  14. 10.1146/annurev.physchem.49.1.173
  15. 10.1073/pnas.92.5.1277
  16. 10.1016/S0065-3233(08)60334-4
  17. 10.1126/science.274.5287.628
  18. 10.1073/pnas.94.5.1779
  19. 10.1002/(SICI)1097-0134(19980101)30:1<2::AID-PROT2>3.0.CO;2-R
  20. 10.1021/ja983169+
  21. 10.1073/pnas.96.13.7232
  22. 10.1016/0022-2836(92)90264-K
  23. 10.1006/jmbi.1998.1885
  24. 10.1002/(SICI)1097-0134(19990215)34:3<269::AID-PROT1>3.0.CO;2-3
  25. 10.1146/annurev.bi.60.070191.004051
  26. 10.1016/S0065-3233(08)60332-0
  27. 10.1073/pnas.96.16.9068
  28. 10.1016/S0968-0004(99)01445-0
  29. 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.3.CO;2-8
  30. 10.1126/science.282.5389.740
  31. 10.1021/ar970343a
  32. 10.1073/pnas.96.11.5897
  33. 10.1021/bi00188a023
  34. {'key': 'b34', 'volume-title': 'Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding.', 'author': 'Fersht AR', 'year': '1998'} / Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. by Fersht AR (1998)
  35. 10.1016/0022-2836(92)90561-W
  36. 10.1073/pnas.96.20.11299
  37. Garel T, Orland H, Pitard E. 1998. Protein folding and heteropolymers. InSpin Glasses and Random Fields, ed. AP Young, pp. 387–443. Singapore: World Scientific (10.1142/9789812819437_0013)
  38. 10.1016/S1367-5931(98)80109-9
  39. 10.1021/bi980356b
  40. 10.1038/nsb0598-363
  41. 10.1073/pnas.94.8.3709
  42. 10.1021/bi00042a017
  43. 10.1146/annurev.physchem.50.1.485
  44. 10.1016/0301-4622(79)87008-8
  45. 10.1002/bip.360360108
  46. 10.1063/1.471044
  47. {'key': 'b47', 'author': 'Hagen SJ', 'year': '2000', 'journal-title': 'J. Mol. Biol.'} / J. Mol. Biol. by Hagen SJ (2000)
  48. 10.1021/jp9622997
  49. 10.1073/pnas.93.21.11615
  50. 10.1021/ar960288q
  51. 10.1002/(SICI)1097-0134(19990215)34:3<281::AID-PROT2>3.0.CO;2-2
  52. Hofrichter J, Thompson PA. 2000. Laser temperature jump methods for studying folding dynamics. InProtein Stability and Folding, ed. KP Murphy. Totowa, NJ: Humana. 2nd ed. In press
  53. 10.1073/pnas.92.15.6878
  54. 10.1006/jmbi.1995.0616
  55. 10.1016/S1359-0278(98)00033-9
  56. 10.1021/bi00107a010
  57. 10.1021/bi982487i
  58. 10.1111/j.1432-1033.1991.tb16426.x
  59. 10.1073/pnas.90.24.11860
  60. 10.1016/S0959-440X(98)80016-X
  61. 10.1073/pnas.92.20.9029
  62. 10.1073/pnas.95.9.4982
  63. 10.1103/PhysRevLett.80.3863
  64. 10.1002/prot.340060202
  65. 10.1016/S0959-440X(99)80069-4
  66. 10.1073/pnas.96.7.3342
  67. Lapidus LJ, Eaton WA, Hofrichter J. Measuring the rate of intramolecular contact formation in unfolded polypeptides. Submitted
  68. 10.1021/ja991382f
  69. 10.1096/fasebj.10.1.8566548
  70. 10.1021/ja970567o
  71. 10.1073/pnas.86.14.5286
  72. 10.1146/annurev.bi.62.070193.003253
  73. 10.1016/S1074-5521(96)90097-6
  74. 10.1006/jmbi.1999.2911
  75. 10.1006/jmbi.1997.1246
  76. 10.1073/pnas.96.20.11311
  77. 10.1073/pnas.95.11.5872
  78. 10.1038/nsb0694-399
  79. 10.1006/jmbi.1994.0023
  80. 10.1038/36626
  81. 10.1006/bbrc.1996.1603
  82. 10.1073/pnas.92.23.10668
  83. 10.1146/annurev.physchem.48.1.545
  84. 10.1016/S1359-0278(96)00060-0
  85. 10.1016/S0959-440X(98)80012-2
  86. 10.1073/pnas.95.4.1490
  87. 10.1073/pnas.96.16.9062
  88. 10.1038/13311
  89. 10.1126/science.271.5255.1558
  90. 10.1073/pnas.92.16.7292
  91. 10.1209/epl/i1998-00175-8
  92. 10.1006/jmbi.1998.1645
  93. 10.1073/pnas.96.18.10115
  94. 10.1103/PhysRevLett.81.5237
  95. 10.1016/S0065-3233(08)60546-X
  96. 10.1063/1.1138345
  97. 10.1021/bi961375t
  98. 10.1016/S0959-440X(97)80004-8
  99. 10.1016/S0959-440X(99)00015-9
  100. 10.1073/pnas.96.11.6031
  101. 10.1016/S0960-9822(95)00197-7
  102. 10.1038/nsb1195-999
  103. 10.1016/S0959-440X(97)80005-X
  104. 10.1016/S0006-3495(98)77977-9
  105. 10.1038/nsb0598-385
  106. 10.1021/ar970086
  107. 10.1006/jmbi.1999.2612
  108. 10.1063/1.471317
  109. 10.1002/(SICI)1097-0134(199604)24:4<413::AID-PROT1>3.0.CO;2-F
  110. 10.1038/nsb0394-149
  111. 10.1063/1.439715
  112. 10.1038/nsb0197-44
  113. 10.1021/bi981933z
  114. 10.1021/jp982362n
  115. 10.1016/S0959-440X(99)80028-1
  116. 10.1021/bi9704764
  117. 10.1021/jp990292u
  118. 10.1021/jp971951a
  119. 10.1073/pnas.93.7.2629
  120. 10.1021/bi952217p
  121. 10.1021/ja971855n
  122. 10.1073/pnas.96.12.6587
  123. 10.1021/jp9802228
  124. 10.1038/nsb0197-51
  125. 10.1073/pnas.92.21.9801
  126. 10.1073/pnas.94.1.148
  127. Thirumalai D, Klimov DK. 2000. Emergence of stable and fast folding protein structures. InStochastic Dynamics and Pattern Formation in Biological and Complex Systems, eds. S Kim, KJ Lee, W. Sung. pp. 95–111. Proceedings#501 American Institute of Physics, Melvelle, New York. (10.1063/1.59954)
  128. 10.1002/(SICI)1097-0134(19990601)35:4<408::AID-PROT4>3.3.CO;2-1
Dates
Type When
Created 23 years ago (July 27, 2002, 7:49 a.m.)
Deposited 3 years, 10 months ago (Oct. 6, 2021, 5:43 p.m.)
Indexed 3 weeks, 6 days ago (July 30, 2025, 10:40 a.m.)
Issued 25 years, 2 months ago (June 1, 2000)
Published 25 years, 2 months ago (June 1, 2000)
Published Print 25 years, 2 months ago (June 1, 2000)
Funders 0

None

@article{Eaton_2000, title={Fast Kinetics and Mechanisms in Protein Folding}, volume={29}, ISSN={1545-4266}, url={http://dx.doi.org/10.1146/annurev.biophys.29.1.327}, DOI={10.1146/annurev.biophys.29.1.327}, number={1}, journal={Annual Review of Biophysics and Biomolecular Structure}, publisher={Annual Reviews}, author={Eaton, William A. and Muñoz, Victor and Hagen, Stephen J. and Jas, Gouri S. and Lapidus, Lisa J. and Henry, Eric R. and Hofrichter, James}, year={2000}, month=jun, pages={327–359} }