Crossref journal-article
Annual Reviews
Annual Review of Biochemistry (22)
Abstract

▪ Abstract  Inorganic polyphosphate (poly P) is a chain of tens or many hundreds of phosphate (Pi) residues linked by high-energy phosphoanhydride bonds. Despite inorganic polyphosphate's ubiquity—found in every cell in nature and likely conserved from prebiotic times—this polymer has been given scant attention. Among the reasons for this neglect of poly P have been the lack of sensitive, definitive, and facile analytical methods to assess its concentration in biological sources and the consequent lack of demonstrably important physiological functions. This review focuses on recent advances made possible by the introduction of novel, enzymatically based assays. The isolation and ready availability of Escherichia coli polyphosphate kinase (PPK) that can convert poly P and ADP to ATP and of a yeast exopolyphosphatase that can hydrolyze poly P to Pi, provide highly specific, sensitive, and facile assays adaptable to a high-throughput format.Beyond the reagents afforded by the use of these enzymes, their genes, when identified, mutated, and overexpressed, have offered insights into the physiological functions of poly P. Most notably, studies in E. coli reveal large accumulations of poly P in cellular responses to deficiencies in an amino acid, Pi, or nitrogen or to the stresses of a nutrient downshift or high salt. The ppk mutant, lacking PPK and thus severely deficient in poly P, also fails to express RpoS (a sigma factor for RNA polymerase), the regulatory protein that governs ≥50 genes responsible for stationary-phase adaptations to resist starvation, heat and oxidant stresses, UV irradiation, etc. Most dramatically, ppk mutants die after only a few days in stationary phase.The high degree of homology of the PPK sequence in many bacteria, including some of the major pathogenic species (e.g. Mycobacterium tuberculosis, Neisseria meningitidis, Helicobacter pylori, Vibrio cholerae, Salmonella typhimurium, Shigella flexneri, Pseudomonas aeruginosa, Bordetella pertussis, and Yersinia pestis), has prompted the knockout of their ppk gene to determine the dependence of virulence on poly P and the potential of PPK as a target for antimicrobial drugs. In yeast and mammalian cells, exo- and endopolyphosphatases have been identified and isolated, but little is known about the synthesis of poly P or its physiologic functions. Whether microbe or human, all species depend on adaptations in the stationary phase, which is truly a dynamic phase of life. Most research is focused on the early and reproductive phases of organisms, which are rather brief intervals of rapid growth. More attention needs to be given to the extensive period of maturity. Survival of microbial species depends on being able to manage in the stationary phase. In view of the universality and complexity of basic biochemical mechanisms, it would be surprising if some of the variety of poly P functions observed in microorganisms did not apply to aspects of human growth and development, to aging, and to the aberrations of disease.Of theoretical interest regarding poly P is its antiquity in prebiotic evolution, which along with its high energy and phosphate content, make it a plausible precursor to RNA, DNA, and proteins. Practical interest in poly P includes many industrial applications, among which is the microbial removal of Piin aquatic environments.

Bibliography

Kornberg, A., Rao, N. N., & Ault-Riché, D. (1999). Inorganic Polyphosphate: A Molecule of Many Functions. Annual Review of Biochemistry, 68(1), 89–125.

Authors 3
  1. Arthur Kornberg (first)
  2. Narayana N. Rao (additional)
  3. Dana Ault-Riché (additional)
References 110 Referenced 877
  1. {'key': 'b1', 'volume-title': 'The Biochemistry of Inorganic Polyphosphates.', 'author': 'Kulaev IS', 'year': '1979'} / The Biochemistry of Inorganic Polyphosphates. by Kulaev IS (1979)
  2. 10.1146/annurev.bi.57.070188.001315
  3. 10.1016/S0065-2911(08)60385-9
  4. Kornberg A. 1994. See Ref.107, pp. 204–8
  5. 10.1128/jb.177.3.491-496.1995
  6. 10.1007/BF01789810
  7. {'key': 'b7', 'first-page': '113', 'volume': '62', 'author': 'Meyer A', 'year': '1904', 'journal-title': 'Bot. Z.'} / Bot. Z. by Meyer A (1904)
  8. {'key': 'b8', 'first-page': '302', 'volume': '6', 'author': 'Wiame J-M', 'year': '1947', 'journal-title': 'Fed. Proc.'} / Fed. Proc. by Wiame J-M (1947)
  9. {'key': 'b9', 'first-page': '191', 'volume': '18', 'author': 'Kornberg A', 'year': '1957', 'journal-title': 'Adv. Enzymol.'} / Adv. Enzymol. by Kornberg A (1957)
  10. 10.1002/pro.5560020116
  11. 10.1016/0006-3002(56)90280-3
  12. 10.1016/0006-3002(57)90008-2
  13. Schmidt G. 1951. InPhosphorus Metabolism, Vol. 1, ed. WD McElroy, B Glass. Baltimore, MD: Johns Hopkins Univ. Press. 443 pp.
  14. 10.1128/br.30.4.772-794.1966 / Bacteriol. Rev. by Harold FM (1967)
  15. Kulaev IS, Vagabov VM, Shabalin YA. 1987. See Ref.108, pp. 233–38
  16. Roberts MF. 1987. InPhosphorus NMR in Biology, ed. CT Burt, pp. 85–95. Boca Raton, FL: CRC
  17. 10.1128/jb.162.1.242-247.1985 / J. Bacteriol. by Rao NN (1985)
  18. 10.1021/bi00588a006
  19. 10.1073/pnas.78.4.2125
  20. 10.1016/S0021-9258(19)38459-5 / J. Biol. Chem. by Ahn K (1990)
  21. 10.1016/S0021-9258(18)54198-3 / J. Biol. Chem. by Akiyama M (1993)
  22. 10.1016/S0021-9258(19)78082-X / J. Biol. Chem. by Wurst H (1994)
  23. 10.1016/S0021-9258(17)37370-2 / J. Biol. Chem. by Crooke E (1994)
  24. 10.1128/JB.180.7.1841-1847.1998 / J. Bacteriol. by Ault-Riché D (1998)
  25. 10.1073/pnas.94.2.439
  26. {'key': 'b26', 'first-page': '107', 'volume': '61', 'author': 'Kempner ES', 'year': '1988', 'journal-title': 'Adv. Enzymol.'} / Adv. Enzymol. by Kempner ES (1988)
  27. 10.1016/0968-0004(93)90169-N
  28. 10.1016/S0021-9258(18)41708-5 / J. Biol. Chem. by Akiyama M (1992)
  29. 10.1074/jbc.272.34.21240
  30. 10.1016/S0021-9258(18)61176-7 / J. Biol. Chem. by Robinson NA (1987)
  31. 10.1128/iai.61.9.3703-3710.1993 / Infect. Immun. by Tinsley CR (1993)
  32. 10.1046/j.1365-2958.1998.00887.x
  33. 10.1128/iai.63.5.1624-1630.1995 / Infect. Immun. by Tinsley CR (1995)
  34. 10.1046/j.1365-2958.1998.00702.x
  35. 10.1111/j.1471-4159.1971.tb00222.x
  36. 10.1016/S0021-9258(17)36906-5 / J. Biol. Chem. by Cowling RT (1994)
  37. 10.1016/S0021-9258(19)50570-1 / J. Biol. Chem. by Pisoni RL (1991)
  38. 10.1016/0006-291X(63)90124-4
  39. 10.1016/S0021-9258(18)97079-1 / J. Biol. Chem. by Griffin JB (1965)
  40. 10.1074/jbc.270.11.5818
  41. 10.1128/jb.173.20.6484-6488.1991
  42. 10.1006/prep.1993.1012
  43. 10.1073/pnas.90.15.7029
  44. 10.1002/yea.320090204
  45. 10.1002/(SICI)1097-0061(19980315)14:4<383::AID-YEA232>3.3.CO;2-J
  46. 10.1016/S0005-2736(98)00013-3
  47. 10.1016/S0014-5793(98)00591-2
  48. 10.1016/S0944-5013(97)80031-6
  49. 10.1016/S0021-9258(17)31776-3 / J. Biol. Chem. by Lorenz B (1994)
  50. 10.1016/S0014-5793(98)00591-2
  51. 10.1128/jb.177.4.898-906.1995
  52. 10.1016/S0021-9258(18)54138-7 / J. Biol. Chem. by Ho MN (1993)
  53. 10.1021/bi00111a004
  54. 10.1074/jbc.271.43.27146
  55. 10.1016/0003-2697(87)90452-0
  56. 10.1128/JB.180.8.2186-2193.1998 / J. Bacteriol. by Rao NN (1998)
  57. Wanner BL. 1994. See Ref.107, pp. 13–21 (10.1016/0168-0102(94)90074-4)
  58. Wanner BL. 1996. See Ref.109, pp. 1357–81 (10.2307/1342218)
  59. Shinagawa H, Makino K, Amemura M, Nakata A. 1987. See Ref.108, pp. 20–25
  60. 10.1016/0022-2836(89)90131-9
  61. 10.1016/0022-2836(86)90073-2
  62. 10.1128/AEM.64.3.896-901.1998 / Appl. Environ. Microbiol. by Geissdorfer W (1998)
  63. 10.1016/0378-1119(93)90013-S
  64. Elvin CM, Hardy CM, Rosenberg H. 1987. See Ref.108, pp. 156–58
  65. 10.1111/j.1365-2958.1990.tb00682.x
  66. Cashel M, Gentry DR, Hernandez VJ, Vinella D. 1996. See Ref.109, pp. 1458–96
  67. 10.1128/jb.177.14.4053-4058.1995
  68. 10.1016/S0021-9258(18)62023-X / J. Biol. Chem. by Lazzarini RA (1971)
  69. 10.1128/jb.110.2.554-561.1972 / J. Bacteriol. by Irr JD (1972)
  70. 10.1146/annurev.mi.47.100193.004231
  71. 10.1016/0092-8674(93)90655-A
  72. 10.1128/jb.174.2.345-348.1992
  73. 10.1146/annurev.mi.48.100194.000413
  74. 10.1128/jb.175.24.7982-7989.1993
  75. 10.1128/jb.178.5.1394-1400.1996
  76. 10.1016/0003-9861(85)90782-9
  77. 10.1073/pnas.94.21.11210
  78. 10.1016/0003-9861(82)90120-5
  79. 10.1016/S0021-9258(17)37279-4 / J. Biol. Chem. by Dunn T (1994)
  80. 10.1073/pnas.94.17.9075
  81. 10.1073/pnas.85.12.4176
  82. 10.1074/jbc.270.22.12980
  83. 10.1016/S0300-9084(73)80122-1
  84. {'key': 'b84', 'first-page': '383', 'volume': '41', 'author': 'Liss E', 'year': '1962', 'journal-title': 'Arch. Microbiol.'} / Arch. Microbiol. by Liss E (1962)
  85. 10.1007/BF00409874
  86. 10.1016/0300-9084(89)90115-6
  87. 10.1128/jb.176.9.2670-2676.1994
  88. 10.1016/S0021-9258(18)43909-9 / J. Biol. Chem. by Van Veen HW (1994)
  89. 10.1021/bi00173a020
  90. 10.4315/0362-028X-57.4.289
  91. 10.1104/pp.97.3.1234
  92. 10.1016/0003-9861(84)90368-0
  93. 10.1038/352516a0
  94. {'key': 'b94', 'first-page': '533', 'volume': '10', 'author': 'Kulaev IS', 'year': '1974', 'journal-title': 'Zh. Evol. Biokhim. Fiziol.'} / Zh. Evol. Biokhim. Fiziol. by Kulaev IS (1974)
  95. 10.1016/0005-2787(67)90083-4
  96. {'key': 'b96', 'first-page': '91', 'volume': '5', 'author': 'Etaix E', 'year': '1978', 'journal-title': 'J. Carbohydr. Nucleosides Nucleotides'} / J. Carbohydr. Nucleosides Nucleotides by Etaix E (1978)
  97. Harada K, Fox S. 1965. InOrigins of Prebiological Systems, ed. S Fox, pp. 289–98. New York: Academic Press (10.1016/B978-1-4832-2861-7.50030-2)
  98. 10.1016/B978-0-12-152826-3.50034-6
  99. 10.1128/aem.60.10.3485-3490.1994 / Appl. Environ. Microbiol. by Hardoyo K (1994)
  100. 10.1002/bit.260190415
  101. {'key': 'b101', 'first-page': '107', 'volume': '10', 'author': 'Haeusler PA', 'year': '1992', 'journal-title': 'Biotechnol. Appl. Biochem.'} / Biotechnol. Appl. Biochem. by Haeusler PA (1992)
  102. 10.1111/j.1470-8744.1988.tb00008.x / Biotechnol. Appl. Biochem. by Hoffman RC (1988)
  103. 10.1271/bbb.62.1594
  104. {'key': 'b104', 'first-page': '220', 'volume': '22', 'author': 'Griffith EJ', 'year': '1992', 'journal-title': 'Chemtech.'} / Chemtech. by Griffith EJ (1992)
  105. 10.1073/pnas.93.9.3865
  106. 10.1111/j.1365-2958.1994.tb01309.x
  107. 10.1046/j.1365-2958.1997.5901947.x
  108. {'key': 'b108', 'volume-title': 'Phosphate in Microorganisms: Cellular and Molecular Biology.', 'author': 'Torriani-Gorini A', 'year': '1994'} / Phosphate in Microorganisms: Cellular and Molecular Biology. by Torriani-Gorini A (1994)
  109. {'key': 'b109', 'volume-title': 'Phosphate Metabolism and Cellular Regulation in Microorganisms.', 'author': 'Torriani-Gorini A', 'year': '1987'} / Phosphate Metabolism and Cellular Regulation in Microorganisms. by Torriani-Gorini A (1987)
  110. {'key': 'b110', 'volume-title': 'Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology.', 'author': 'Neidhardt FC', 'year': '1996'} / Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. by Neidhardt FC (1996)
Dates
Type When
Created 23 years, 1 month ago (July 27, 2002, 7:42 a.m.)
Deposited 1 year, 7 months ago (Jan. 5, 2024, 11:55 p.m.)
Indexed 3 days, 18 hours ago (Aug. 31, 2025, 6:39 a.m.)
Issued 26 years, 3 months ago (June 1, 1999)
Published 26 years, 3 months ago (June 1, 1999)
Published Print 26 years, 3 months ago (June 1, 1999)
Funders 0

None

@article{Kornberg_1999, title={Inorganic Polyphosphate: A Molecule of Many Functions}, volume={68}, ISSN={1545-4509}, url={http://dx.doi.org/10.1146/annurev.biochem.68.1.89}, DOI={10.1146/annurev.biochem.68.1.89}, number={1}, journal={Annual Review of Biochemistry}, publisher={Annual Reviews}, author={Kornberg, Arthur and Rao, Narayana N. and Ault-Riché, Dana}, year={1999}, month=jun, pages={89–125} }