10.1146/annurev-matsci-070909-104521
Crossref journal-article
Annual Reviews
Annual Review of Materials Research (22)
Abstract

Thermoelectric power generation technology is now expected to help overcome global warming and climate change issues by recovering and converting waste heat into electricity, thus improving the total efficiency of energy utilization and suppressing the consumption of fossil fuels that are supposedly the major sources of CO2 emission. Thermoelectric oxides, composed of nontoxic, naturally abundant, light, and cheap elements, are expected to play a vital role in extensive applications for waste heat recovery in an air atmosphere. This review article summarizes our previous and ongoing studies on SrTiO3-based materials and further discusses nanostructuring approaches for both SrTiO3 and CaMnO3 materials. ZnMnGaO4 is taken as a model case for constructing a self-assembled nanostructure. The present status of thermoelectric oxide module development is also introduced and discussed.

Bibliography

Koumoto, K., Wang, Y., Zhang, R., Kosuga, A., & Funahashi, R. (2010). Oxide Thermoelectric Materials: A Nanostructuring Approach. Annual Review of Materials Research, 40(1), 363–394.

Authors 5
  1. Kunihito Koumoto (first)
  2. Yifeng Wang (additional)
  3. Ruizhi Zhang (additional)
  4. Atsuko Kosuga (additional)
  5. Ryoji Funahashi (additional)
References 91 Referenced 417
  1. {'key': 'B1', 'volume-title': 'General Reviews of Thermoelectrics', 'author': 'Kajikawa T', 'year': '2008'} / General Reviews of Thermoelectrics by Kajikawa T (2008)
  2. 10.1103/PhysRevB.56.R12685
  3. 10.1143/JJAP.39.L1127
  4. 10.1557/mrs2006.46
  5. 10.1063/1.1847723
  6. 10.1063/1.2362922
  7. 10.1002/adma.200600527
  8. 10.1021/ja071875h
  9. 10.1063/1.2981516
  10. 10.1103/PhysRevB.68.174107
  11. 10.1103/PhysRev.134.A442
  12. 10.1103/PhysRevB.63.113104
  13. 10.1016/j.jallcom.2004.09.005
  14. 10.1063/1.2035889
  15. 10.1063/1.2822142
  16. 10.1016/S0925-8388(02)00972-6
  17. 10.1016/j.jallcom.2003.07.016
  18. 10.1016/j.matlet.2004.08.012
  19. 10.1063/1.2475878
  20. 10.1107/S0365110X57001929
  21. 10.1107/S0365110X58000128
  22. 10.1063/1.2349559
  23. 10.1111/j.1744-7402.2007.02147.x
  24. 10.1007/s10832-008-9455-9
  25. 10.1016/j.ceramint.2007.09.034
  26. 10.1080/095008300176308
  27. 10.1063/1.3117943
  28. 10.2109/jcersj.114.102
  29. 10.1063/1.2820447
  30. 10.4028/www.scientific.net/MSF.321-324.198
  31. 10.1103/PhysRevB.51.5649
  32. 10.1021/cm960398r
  33. 10.1063/1.2362990
  34. 10.1103/PhysRevB.61.7459
  35. 10.1103/PhysRevB.47.12727
  36. 10.1080/108939599199774
  37. 10.1038/nmat1821
  38. 10.1016/S1369-7021(07)70244-4
  39. 10.1016/j.tsf.2007.10.034
  40. 10.1002/pssb.200844248
  41. 10.1063/1.2809364
  42. 10.1143/APEX.1.015007
  43. 43. Zhang RZ, Wang CL, Li JC, Koumoto K. 2010. Simulation of thermoelectric performance of bulk SrTiO3with two-dimensional electron gas grain boundaries. J. Am. Ceram. Soc. In press (10.1111/j.1551-2916.2010.03619.x)
  44. 10.1103/PhysRevB.57.2153
  45. 10.1016/S1748-0132(07)70018-X
  46. 10.1115/1.3072927
  47. 10.1063/1.368928
  48. 10.1103/PhysRev.113.1046
  49. 10.1103/PhysRevB.46.6131
  50. 10.1126/science.1136494
  51. 10.1557/mrs2006.44
  52. 10.1126/science.1093164
  53. 10.1063/1.1619221
  54. 10.1038/35098012
  55. 10.1126/science.1072886
  56. 10.1038/290765a0
  57. 10.1126/science.1156446
  58. 10.1006/jssc.1995.1384
  59. 10.1126/science.1092963
  60. 10.1021/cm0612090
  61. 10.1016/j.actamat.2006.09.036
  62. 10.1002/adma.200502770
  63. 10.1063/1.2900960
  64. 10.1002/adma.200800162
  65. 10.1103/PhysRevB.73.153303
  66. 10.1063/1.1289803
  67. 10.1023/A:1017970924312
  68. 10.1016/S1359-6462(98)00290-5
  69. {'key': 'B69', 'volume-title': 'Transport Phenomena in Metallurgy', 'author': 'Geiger GH', 'year': '1973'} / Transport Phenomena in Metallurgy by Geiger GH (1973)
  70. 10.1016/S1359-6454(02)00057-5
  71. 10.1016/S0038-1098(96)00533-9
  72. 10.1103/PhysRevB.64.064421
  73. 10.1063/1.3003065
  74. 10.1016/S0167-2738(03)00108-5
  75. 10.1021/ic800463s
  76. 10.1143/JJAP.47.6399
  77. 10.1063/1.3125450
  78. 10.2109/jcersj.114.97
  79. 10.1016/0022-4596(86)90180-5
  80. 10.1016/j.jmmm.2004.07.004
  81. 10.1103/PhysRevB.68.054432
  82. 10.1016/j.physb.2004.12.001
  83. 10.1063/1.2402115
  84. 10.1143/JJAP.48.010201
  85. {'key': 'B85', 'volume-title': 'Thermal Conductivity of Solids', 'author': 'Parrott JE', 'year': '1975'} / Thermal Conductivity of Solids by Parrott JE (1975)
  86. 10.1557/JMR.2003.0226
  87. 10.1063/1.1376155
  88. 10.1016/S0378-7753(01)00837-0
  89. 10.1109/ICT.2002.1190350
  90. 10.1109/ICT.2003.1287585
  91. 10.1063/1.1780593
Dates
Type When
Created 15 years, 2 months ago (July 2, 2010, 7:12 p.m.)
Deposited 3 years, 10 months ago (Oct. 13, 2021, 5:14 p.m.)
Indexed 1 week, 2 days ago (Aug. 29, 2025, 5:50 a.m.)
Issued 15 years, 3 months ago (June 1, 2010)
Published 15 years, 3 months ago (June 1, 2010)
Published Print 15 years, 3 months ago (June 1, 2010)
Funders 0

None

@article{Koumoto_2010, title={Oxide Thermoelectric Materials: A Nanostructuring Approach}, volume={40}, ISSN={1545-4118}, url={http://dx.doi.org/10.1146/annurev-matsci-070909-104521}, DOI={10.1146/annurev-matsci-070909-104521}, number={1}, journal={Annual Review of Materials Research}, publisher={Annual Reviews}, author={Koumoto, Kunihito and Wang, Yifeng and Zhang, Ruizhi and Kosuga, Atsuko and Funahashi, Ryoji}, year={2010}, month=jun, pages={363–394} }