Abstract
Complex transition metal oxides have played a central role in the study of magnetic materials, serving as model systems for explorations of fundamental exchange interactions and the relationships between structural, electronic, and magnetic responses. Enabled by advances in epitaxial synthesis techniques, abrupt heterointerfaces and superlattices have emerged as a powerful platform for engineering novel magnetic behavior in oxides. Following a brief introduction to the dominant exchange mechanisms in metal oxides, we review the general means by which interfacial magnetism can be tailored in ABO3 perovskites, including interfacial charge transfer, epitaxial strain and structural coupling, orbital polarizations and reconstructions, and tailoring exchange interactions via cation ordering. Recent examples are provided to illustrate how these strategies have been employed at isolated interfaces and in short-period superlattices. We conclude by briefly discussing underexplored and emerging research directions in the field.
References
150
Referenced
198
{'key': 'B1', 'volume-title': 'Magnetism and the Chemical Bond', 'author': 'Goodenough JB.', 'year': '1963'}
/ Magnetism and the Chemical Bond by Goodenough JB. (1963)10.1007/978-3-662-09298-9_1
10.1038/nmat3223
10.1146/annurev-matsci-070813-113315
10.1038/nmat1805
10.1088/0953-8984/20/43/434221
10.1007/BF01507527
10.1107/S0567740872007976
10.1103/PhysRev.100.564
10.1016/0022-3697(59)90061-7
10.1103/PhysRev.79.350
10.1007/3-540-45258-3_5
{'key': 'B13', 'volume-title': 'Magnetism: From Fundamentals to Nanoscale Dynamics', 'author': 'Stöhr J', 'year': '2006'}
/ Magnetism: From Fundamentals to Nanoscale Dynamics by Stöhr J (2006)10.1103/PhysRevLett.55.418
10.1088/0953-8984/23/44/445601
10.1103/PhysRev.82.403
10.1103/PhysRev.100.675
10.1103/PhysRev.118.141
10.1038/nature02308
10.1103/PhysRevB.76.064532
10.1038/nature00977
10.1063/1.125103
10.1103/PhysRevB.66.184426
10.1038/nature02450
10.1103/PhysRevB.73.041104
10.1063/1.2749431
10.1103/PhysRevB.82.201101
10.1149/1.1393283
10.1103/PhysRevB.77.174409
10.1038/nmat3405
10.1103/PhysRevLett.100.257203
10.1063/1.2842421
10.1021/nl1022628
10.1103/PhysRevB.80.140405
10.1038/nmat2557
10.1103/PhysRevB.66.094410
10.1103/PhysRevLett.87.277202
10.1007/s100510050998
10.1103/PhysRevB.80.155114
10.1103/PhysRevLett.107.167202
10.1103/RevModPhys.78.1185
10.1103/PhysRevB.68.134415
10.1103/PhysRevLett.102.136402
10.1103/PhysRevLett.104.127202
10.1103/PhysRevB.80.174406
10.1103/PhysRevB.56.8265
10.1103/PhysRevLett.82.1558
10.1021/cm021111v
10.1107/S0365110X63002589
10.1021/cm021315b
10.1063/1.2819606
10.1103/PhysRevLett.108.047203
10.1063/1.3514575
10.1103/PhysRevLett.107.257601
10.1021/cm302231k
10.1557/mrs.2012.49
10.1103/PhysRevB.70.014432
10.1063/1.367310
10.1143/JPSJ.68.3790
10.1103/PhysRevLett.84.3169
10.1103/PhysRevB.83.064424
10.1103/PhysRevLett.110.157201
10.1103/PhysRevB.73.235121
10.1063/1.3213346
10.1103/PhysRevB.75.054408
10.1103/PhysRevB.79.214425
10.1063/1.4802659
10.1038/nature09331
10.1103/PhysRevLett.97.267602
10.1103/PhysRevB.77.014434
10.1063/1.3027063
10.1063/1.3059606
10.1103/PhysRevB.78.174402
10.1063/1.3336010
10.1103/PhysRevB.85.140404
10.1103/PhysRevB.86.014430
10.1103/PhysRevLett.111.027206
10.1103/PhysRevB.79.081405
10.1103/PhysRevLett.105.087204
10.1103/PhysRevB.83.153411
10.1103/PhysRevLett.110.256401
10.1103/PhysRevB.82.113402
10.1103/PhysRevLett.105.227203
10.1038/srep02214
10.1002/adma.201301841
10.1103/PhysRevB.88.121104
10.1063/1.4714734
10.1103/PhysRevB.75.224402
10.1126/science.1149338
10.1103/PhysRevLett.105.027201
10.1103/PhysRevB.84.024422
10.1038/nphys272
10.1126/science.280.5366.1064
10.1063/1.1327287
10.1103/PhysRevB.57.10613
10.1103/PhysRevB.63.104402
10.1143/APEX.1.101302
10.1103/PhysRevB.84.064436
10.1063/1.373855
10.1038/nmat3224
10.1103/PhysRevB.87.195116
10.1103/PhysRevB.88.144411
10.1103/PhysRevB.60.R12561
10.1103/PhysRevB.80.180417
10.1063/1.4789753
10.1063/1.3631787
10.1126/science.1202647
10.1103/PhysRevLett.111.106804
10.1103/PhysRevB.84.165119
10.1103/PhysRevB.86.195132
10.1103/PhysRevLett.110.126404
10.1006/jssc.1997.7287
10.1063/1.4809547
10.1063/1.1575503
10.1021/cm102657v
10.1103/PhysRevB.88.054111
10.1063/1.3672837
10.1063/1.4804941
10.1016/S0039-6028(02)01546-7
10.1063/1.2987731
10.1063/1.3211130
10.1002/adfm.201200143
10.1103/PhysRevB.77.085401
10.1002/adma.201100417
10.1103/PhysRevB.86.140102
10.1103/PhysRevLett.104.167203
10.1103/PhysRevLett.109.027201
10.1103/PhysRevLett.110.237201
10.1016/j.surfrep.2010.09.001
10.1103/PhysRevLett.99.155502
10.1103/PhysRevLett.103.146101
10.1103/PhysRevB.88.155325
10.1126/science.1148820
10.1002/pssa.201127120
10.1038/nmat1569
10.1063/1.2798060
10.1209/0295-5075/100/67002
10.1557/mrs.2011.330
10.1103/PhysRevB.71.144112
10.1103/PhysRevLett.106.036101
10.1103/PhysRevLett.107.036104
10.1038/nmat2958
10.1103/PhysRevB.77.045122
10.1103/PhysRevB.84.075104
10.1063/1.3060808
10.1103/PhysRevLett.90.217403
10.1103/PhysRevLett.99.197404
10.1063/1.2748855
10.1103/PhysRevB.82.140405
10.1038/nphys2702
Dates
Type | When |
---|---|
Created | 11 years, 5 months ago (Feb. 28, 2014, 7:27 p.m.) |
Deposited | 3 years, 10 months ago (Oct. 13, 2021, 5:28 p.m.) |
Indexed | 2 weeks, 2 days ago (Aug. 6, 2025, 9:38 a.m.) |
Issued | 11 years, 1 month ago (July 1, 2014) |
Published | 11 years, 1 month ago (July 1, 2014) |
Published Print | 11 years, 1 month ago (July 1, 2014) |
@article{Bhattacharya_2014, title={Magnetic Oxide Heterostructures}, volume={44}, ISSN={1545-4118}, url={http://dx.doi.org/10.1146/annurev-matsci-070813-113447}, DOI={10.1146/annurev-matsci-070813-113447}, number={1}, journal={Annual Review of Materials Research}, publisher={Annual Reviews}, author={Bhattacharya, Anand and May, Steven J.}, year={2014}, month=jul, pages={65–90} }