10.1146/annurev-conmatphys-070909-104059
Crossref journal-article
Annual Reviews
Annual Review of Condensed Matter Physics (22)
Abstract

The Fermi-Hubbard model is a key concept in condensed matter physics and provides crucial insights into electronic and magnetic properties of materials. Yet, the intricate nature of Fermi systems poses a barrier to answering important questions concerning d-wave superconductivity and quantum magnetism. Recently, it has become possible to experimentally realize the Fermi-Hubbard model using a fermionic quantum gas loaded into an optical lattice. In this atomic approach to the Fermi-Hubbard model, the Hamiltonian is a direct result of the optical lattice potential created by interfering laser fields and short-ranged ultracold collisions. It provides a route to simulate the physics of the Hamiltonian and to address open questions and novel challenges of the underlying many-body system. This review gives an overview of the current efforts in understanding and realizing experiments with fermionic atoms in optical lattices and discusses key experiments in the metallic, band-insulating, superfluid, and Mott-insulating regimes.

Bibliography

Esslinger, T. (2010). Fermi-Hubbard Physics with Atoms in an Optical Lattice. Annual Review of Condensed Matter Physics, 1(1), 129–152.

Authors 1
  1. Tilman Esslinger (first)
References 150 Referenced 455
  1. 10.1126/science.269.5221.198
  2. 10.1103/PhysRevLett.75.3969
  3. 10.1103/RevModPhys.71.463
  4. 10.1038/nature02199
  5. 10.1126/science.1093280
  6. 10.1103/PhysRevLett.92.040403
  7. 10.1103/PhysRevLett.92.120403
  8. 10.1103/PhysRevLett.92.150402
  9. 10.1103/PhysRevLett.93.050401
  10. 10.1103/PhysRevLett.95.020404
  11. 10.1103/PhysRevLett.81.3108
  12. 10.1038/415039a
  13. 10.1007/3-540-14858-2 / The Mott Metal-Insulator Transition by Gebhard F (1997)
  14. 10.1098/rspa.1963.0204
  15. 10.1098/rspa.1964.0019
  16. 10.1126/science.235.4793.1196
  17. 10.1103/RevModPhys.68.13
  18. 10.1103/PhysRevLett.89.220407
  19. 10.1103/PhysRevLett.94.080403
  20. 10.1103/PhysRevLett.96.180402
  21. 10.1103/PhysRevLett.96.180403
  22. 10.1103/PhysRevLett.99.220601
  23. 10.1038/nature07244
  24. 10.1126/science.1165449
  25. 10.1103/RevModPhys.80.885
  26. 10.1080/00018730701223200
  27. 10.1016/j.aop.2004.09.010
  28. 10.1103/RevModPhys.78.179
  29. 10.1103/RevModPhys.80.1215
  30. Ketterle W, Zwierlein MW. 2008. Making, probing and understanding ultracold Fermi gases. In Proc. Int. School Phys. “Enrico Fermi” Course CLXIV, ed. M Inguscio, W Ketterle, C Salomon, pp. 95–287. Amsterdam: IOS Press (10.1109/QELS.2007.4431788)
  31. 10.1103/RevModPhys.73.307
  32. Ketterle W, Durfee DS, Stamper-Kurn DM. 1999. Making, probing and understanding Bose-Einstein condensates. In Proc. Int. School of Phys. “Enrico Fermi” Course CXL, ed. M Inguscio, S Stringari, C Wieman, pp. 67–176. Amsterdam: IOS Press
  33. 10.1103/RevModPhys.70.721
  34. 10.1103/RevModPhys.70.707
  35. 10.1103/RevModPhys.70.685
  36. 10.1126/science.285.5434.1703
  37. 10.1126/science.1059318
  38. 10.1103/PhysRevLett.87.080403
  39. 10.1103/PhysRevA.47.4114
  40. 10.1103/RevModPhys.82.1225
  41. 10.1103/PhysRevLett.97.080404
  42. 10.1103/PhysRevA.79.021601
  43. 10.1016/S1049-250X(08)60186-X
  44. {'key': 'B44', 'first-page': '272', 'volume': '7', 'author': 'Letokhov VS', 'year': '1968', 'journal-title': 'JETP Lett.'} / JETP Lett. by Letokhov VS (1968)
  45. 10.1016/0375-9601(77)90335-8
  46. 10.1016/0030-4018(75)90159-5
  47. 10.1364/JOSAB.6.002023
  48. 10.1103/PhysRevLett.68.3861
  49. 10.1103/PhysRevLett.69.49
  50. 10.1103/PhysRevLett.70.2249
  51. 10.1103/PhysRevLett.70.410
  52. 10.1103/PhysRevLett.75.2823
  53. 10.1103/PhysRevLett.75.4583
  54. 10.1103/PhysRevLett.76.4508
  55. 10.1103/PhysRevLett.76.4512
  56. 10.1126/science.282.5394.1686
  57. 10.1126/science.1058149
  58. 10.1103/PhysRevA.68.011601
  59. 10.1103/PhysRevLett.92.160601
  60. 10.1103/PhysRevB.40.546
  61. 10.1038/nature00968
  62. 10.1103/PhysRevLett.92.130403
  63. 10.1103/PhysRevLett.87.160405
  64. 10.1103/PhysRevLett.91.250402
  65. 10.1038/nature02530
  66. 10.1126/science.1100700
  67. 10.1088/1464-4266/5/2/352
  68. 10.1103/PhysRevLett.93.110401
  69. 10.1103/PhysRevLett.93.080404
  70. 10.1103/PhysRevA.70.043627
  71. 10.1103/PhysRevA.72.033616
  72. 10.1103/PhysRevA.75.063609
  73. 10.1103/RevModPhys.62.113
  74. 10.1007/BF00683774
  75. {'key': 'B75', 'volume-title': 'Interacting Electrons and Quantum Magnetism', 'author': 'Auerbach A', 'year': '1990'} / Interacting Electrons and Quantum Magnetism by Auerbach A (1990)
  76. 10.1103/PhysRevLett.98.216402
  77. 10.1103/PhysRevA.79.033620
  78. 10.1103/PhysRevLett.95.056401
  79. Georges A. 2008. Condensed matter physics with light and atoms: strongly correlated cold fermions in optical lattices. See Ref. 30, pp. 477–510
  80. 10.1103/PhysRevLett.91.090402
  81. 10.1126/science.1090580
  82. 10.1103/PhysRevB.2.1324
  83. 10.1023/A:1018705520999
  84. 10.1038/nature05224
  85. 10.1103/PhysRevLett.88.173201
  86. 10.1103/PhysRevLett.90.053201
  87. 10.1103/PhysRevLett.90.230404
  88. 10.1103/PhysRevLett.93.090404
  89. 10.1103/PhysRevLett.94.103201
  90. 10.1103/PhysRevLett.96.030401
  91. 10.1103/PhysRevA.73.031601
  92. {'key': 'B92', 'first-page': '0908.3015v2', 'author': 'Zhou Q', 'year': '2009', 'journal-title': 'Universal Thermometry for Quantum Simulation'} / Universal Thermometry for Quantum Simulation by Zhou Q (2009)
  93. 10.1364/OL.32.003143
  94. 10.1103/PhysRevLett.74.1542
  95. 10.1038/nature05319
  96. 10.1103/PhysRevA.70.013603
  97. 10.1038/nature05513
  98. 10.1038/nature04918
  99. 10.1103/PhysRevLett.99.100402
  100. 10.1103/PhysRevLett.99.080403
  101. 10.1103/PhysRevLett.99.230403
  102. 10.1103/PhysRevA.79.043626
  103. 10.1201/b12795
  104. 10.1103/PhysRevLett.102.135302
  105. 10.1103/PhysRevLett.104.180401
  106. 10.1103/PhysRevA.74.041604
  107. 10.1103/PhysRevLett.102.065301
  108. 10.1103/PhysRevLett.103.035303
  109. 10.1103/PhysRevLett.104.080401
  110. 10.1103/PhysRevLett.91.110403
  111. 10.1103/PhysRevA.74.013622
  112. 10.1103/PhysRevLett.99.120404
  113. 10.1103/PhysRevA.77.015602
  114. 10.1103/PhysRevA.79.061601
  115. 10.1103/PhysRevLett.78.990
  116. 10.1103/PhysRevLett.81.2194
  117. 10.1103/PhysRevA.69.022306
  118. 10.1073/pnas.0809862105
  119. 10.1103/PhysRevLett.103.140401
  120. 10.1103/PhysRevLett.97.220403
  121. 10.1103/PhysRevLett.96.250402
  122. {'key': 'B122', 'first-page': '315', 'author': 'Donner T', 'year': '2007', 'journal-title': 'Science'} / Science by Donner T (2007)
  123. 10.1103/PhysRevLett.94.110401
  124. 10.1038/nature03500
  125. 10.1103/PhysRevA.81.013415
  126. 10.1103/PhysRevLett.102.030401
  127. 10.1103/PhysRevA.76.053618
  128. 10.1038/nphys571
  129. 10.1103/PhysRevA.79.013630
  130. 10.1038/nphys776
  131. 10.1103/PhysRevA.79.041601
  132. 10.1103/PhysRevLett.82.871
  133. 10.1103/PhysRevLett.82.4569
  134. 10.1038/nphys1476
  135. 10.1088/1367-2630/11/10/103030
  136. 10.1126/science.283.5408.1706
  137. 10.1103/PhysRevLett.98.240402
  138. 10.1038/nature07172
  139. 10.1103/PhysRevLett.95.090404
  140. 10.1126/science.1118024
  141. 10.1038/nphys645
  142. 10.1038/nature08482
  143. 10.1038/nature08244
  144. 10.1038/nphys1102
  145. {'key': 'B145', 'first-page': '5861', 'volume': '319', 'author': 'Trotzky S', 'year': '2007', 'journal-title': 'Nature'} / Nature by Trotzky S (2007)
  146. 10.1038/nature06011
  147. 10.1103/PhysRevLett.102.100403
  148. 10.1038/nature07000
  149. 10.1038/nature07071
  150. 10.1103/PhysRevLett.102.055301
Dates
Type When
Created 15 years ago (July 29, 2010, 7:39 p.m.)
Deposited 3 years, 10 months ago (Oct. 8, 2021, 6 a.m.)
Indexed 22 hours, 23 minutes ago (Aug. 23, 2025, 9:37 p.m.)
Issued 15 years ago (Aug. 10, 2010)
Published 15 years ago (Aug. 10, 2010)
Published Print 15 years ago (Aug. 10, 2010)
Funders 0

None

@article{Esslinger_2010, title={Fermi-Hubbard Physics with Atoms in an Optical Lattice}, volume={1}, ISSN={1947-5462}, url={http://dx.doi.org/10.1146/annurev-conmatphys-070909-104059}, DOI={10.1146/annurev-conmatphys-070909-104059}, number={1}, journal={Annual Review of Condensed Matter Physics}, publisher={Annual Reviews}, author={Esslinger, Tilman}, year={2010}, month=aug, pages={129–152} }